Primary aliphatic biogenic amines have been successfully oxidized using a quinonoid species that mimics the metabolic activity of copper-containing amine oxidase (CuAO) enzymes. Especially, high catalytic performances were observed with aminoacetone, a threonine catabolite, and methylamine, a metabolite of adrenaline, and with the primary amino groups of putrescine and spermidine which are both decarboxylation products of ornithine and S-adenosyl-methionine. Furthermore, contrary to flavine adenine dinucleotide (FAD)-dependent amine oxidase enzymes, no activity was found toward secondary and tertiary amines.
View Article and Find Full Text PDFThis review aims to compare continuous with on-demand pharmacotherapy of allergic rhinitis by focusing on pharmacodynamic, pharmacokinetic, safety, effectiveness, cost and cost-effectiveness considerations. A working party of experts reviewed and discussed the literature and guidelines, and conducted a qualitative analysis of the Summary of Product Characteristics of specific medicines. With respect to medicines, the working party limited itself to antihistamines, nasal corticosteroids and leukotriene antagonists.
View Article and Find Full Text PDFDrugs for allergy are often taken in combination with other drugs, either to treat allergy or other conditions. In common with many pharmaceuticals, most such drugs are subject to metabolism by P450 enzymes and to transmembrane transport. This gives rise to considerable potential for drug-drug interactions, to which must be added consideration of drug-diet interactions.
View Article and Find Full Text PDFWhilst pharmacokinetics describe the relationship between dose levels and concentration-time profiles of a drug in the body and pharmacodynamics describe the concentration-response relationships, pharmacokinectics-pharmacodynamics(PK-PD) models link these two items providing a framework for modelling the time course of drug response. In this chapter, PK-PD models, describing the therapeutic effects of drugs used for the therapy of allergic diseases have been reviewed. Emphasis was given also to the description of the receptor occupancy, which is tightly related to the downstream clinical response.
View Article and Find Full Text PDFPharmacokinetics are typically dependent on a variety of physiological variables (e.g., age, ethnicity, or pregnancy) or pathological conditions (e.
View Article and Find Full Text PDFIn this article, aspects of absorption, distribution, metabolism, and excretion have been described bearing in mind the pathogenesis of allergic diseases and their possible therapeutic opportunities. The importance of the routes of administration of the different therapeutic groups has been emphasized. The classical aspects of drug metabolism and disposition related to oral administration have been reviewed, but special emphasis has been given to intranasal, cutaneous, transdermal, and ocular administration as well as to the absorption and the subsequent bioavailability of drugs.
View Article and Find Full Text PDFAllergic diseases are characterized by the activation of inflammatory cells and by a massive release of mediators. The aim of this chapter was to describe succinctly the modes of action, indications, and side effects of the major antiallergic and antiasthmatic drugs. When considering the ideal pharmacokinetic characteristics of a drug, a poorly metabolized drug may confer a lower variability in plasma concentrations and metabolism-based drug interactions, although poorly metabolized drugs may be prone to transporter-based disposition and interactions.
View Article and Find Full Text PDFSecond generation H1 antihistamines are considered first-line therapy for allergic rhinitis and chronic idiopathic urticaria, largely because of their nonsedating effects. Evaluating pharmacokinetic and pharmacodynamic parameters and clinical efficacy of a drug is important, but models to predict clinical efficacy are lacking. Receptor occupancy (RO), a predictor for human pharmacodynamics and antihistamine potency that takes into account the affinity of the drug for the receptor and its free plasma concentration, may be a more accurate way to predict a drug's clinical efficacy.
View Article and Find Full Text PDFWhat Is Already Known About This Subject: The reproducible and standardized histamine-induced wheal and flare model helps identify the objective effectiveness of antihistamines in humans, as well as their differences in onset and duration of action. Some of the newest antihistamines have already been compared in a head-to-head setting using this model. However, their objective action at inhibiting the allergen-induced wheal and flare response has not been reported yet.
View Article and Find Full Text PDFIn this review, the major enzyme systems involved in vivo in the oxidative metabolism of xenobiotic amines in humans are discussed, i.e. the monooxygenases [cytochrome P450 system (CYPs) and flavin-containing monooxygenases (FMOs)] and the amine oxidases (AOs).
View Article and Find Full Text PDFThis review focuses on one of the key factors accounting for differences in drug/metabolite exposure in paediatric and elderly subjects compared with that of the adult population, that is, differences in drug metabolism (both qualitative and quantitative) and in particular differences due to changes in the activity and/or concentration of drug metabolizing enzymes. Important differences have been found in the paediatric population compared with adults for both phase I (e.g.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
December 2006
Although the majority of oxidative metabolic reactions are mediated by the CYP superfamily of enzymes, non-CYP-mediated oxidative reactions can play an important role in the metabolism of xenobiotics. The (major) oxidative enzymes, other than CYPs, involved in the metabolism of drugs and other xenobiotics are: the flavin-containing monooxygenases, the molybdenum hydroxylases (aldehyde oxidase and xanthine oxidase), the prostaglandin H synthase, the lipoxygenases, the amine oxidases (monoamine, polyamine, diamine and semicarbazide-sensitive amine oxidases) and the alcohol and aldehyde dehydrogenases. In a similar manner to CYPs, these oxidative enzymes can also produce therapeutically active metabolites and reactive/toxic metabolites, modulate the efficacy of therapeutically active drugs or contribute to detoxification.
View Article and Find Full Text PDFThe goal of this study was to quantify in the dog the error that is made in assessing drug tissue concentrations when no correction for blood contamination is performed and hence to determine in which organs such a correction should be made. The organs investigated were the heart, the brain, the liver and the skeletal muscle, and the test drug used was the H1-antihistamine, cetirizine (0.1 or 0.
View Article and Find Full Text PDFThe absorption, disposition and metabolism of levetiracetam, a new antiepileptic drug, have been investigated after a single oral dose of the (14)C-labelled molecule administered to male healthy volunteers. As chiral inversion can occur during drug metabolism, the chiral inversion of levetiracetam and/or of its major metabolite produced by hydrolysis (the corresponding acid) was also investigated. Finally, the in vitro hydrolysis of levetiracetam to its major metabolite and the inhibition of this reaction in human blood have been studied.
View Article and Find Full Text PDFThe aim of the present study was to determine (1) the extent of levocetirizine binding to human blood cells, plasma and individual plasma proteins; (2) the parameters for levocetirizine binding to individual plasma proteins both at their physiological concentrations and, for human serum albumin (HSA), at a lower saturating concentration; and (3) to simulate levocetirizine distribution in human blood using the information obtained at physiological haematocrit (H) for blood cells and at physiological concentrations for individual plasma proteins. The nature of the main binding sites of HSA, i.e.
View Article and Find Full Text PDF