Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage.
View Article and Find Full Text PDFMotor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models.
View Article and Find Full Text PDFSpinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spinal cord of SMARD1 animals, ameliorating their phenotype, by protecting their endogenous motor neurons.
View Article and Find Full Text PDFDevelopmental studies and experimental data have enabled us to assert that the terminal cell differentiation state is reversible, and that altering the balance of specific transcription factors could be a powerful strategy for inducing pluripotency. Due to the risks related to using induced pluripotent cells in clinical applications, biologists are now striving to develop methods to induce a committed differentiated cell type by direct conversion of another cell line. Several reprogramming factors have been discovered, and some cellular phenotypes have been obtained by novel transdifferentiation processes.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of motor neurons. Currently, there is no effective therapy for ALS. Stem cell transplantation is a potential therapeutic strategy for ALS, and the reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) represents a novel cell source.
View Article and Find Full Text PDF