Publications by authors named "Margherita Moreno"

Printed batteries have undergone increased investigation in recent years because of the growing daily use of small electronic devices. With this in mind, industrial gravure printing has emerged as a suitable production technology due to its high speed and quality, and its capability to produce any shape of image. The technique is one of the most appealing for the production of functional layers for many different purposes, but it has not been highly investigated.

View Article and Find Full Text PDF

Ionic liquids offer the opportunity of tailoring their properties by changing the chemical structure of the cation and anion. Blending of two or more liquids adds a further dimension to this "chemical space". Here we present the results of a study of three binary and one ternary mixture of the ionic liquids formed by the N-butyl-N-methylpyrrolidinium cation with bis(trifluoromethanesulfonyl) imide, bis(pentafluoroethanesulfonyl) imide and (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl) imide.

View Article and Find Full Text PDF

We present the results of a thorough molecular modeling study of several alkylthiophene-based oligomers and polymers. In particular, we consider two polymers whose limit-ordered crystal structures have been recently reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and form I' of poly(3-butylthiophene) (P3BT). We first describe the development of a series general purpose force fields for the simulation of these and related systems.

View Article and Find Full Text PDF

Room-temperature ionic liquids (RTILs) based on the N-butyl-N-methyl pyrrolidinium cation (PYR(14)(+)) combined with three different fluorinated anions have been prepared and characterized by NMR, conductivity, and rheological measurements. The anions are (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl)imide (IM(14)(-)), bis(pentafluoroethanesulfonyl)imide (BETI(-)), and bis(trifluoromethanesulfonyl)imide (TFSI(-)). Intermolecular anion-cation nuclear Overhauser enhancements (NOEs) have been experimentally observed in all titled compounds.

View Article and Find Full Text PDF

We report on molecular dynamics simulations of the ionic liquid [bmim][BF 4] and its mixtures with water, from zero up to 0.5 mol fraction of water. All of the simulations are carried out with two published force fields.

View Article and Find Full Text PDF