Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge the data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions.
View Article and Find Full Text PDFIntroduction: The use of novel adjuvants in human vaccines continues to expand as their contribution to preventing disease in challenging populations and caused by complex pathogens is increasingly understood. AS01 is a family of liposome-based vaccine Adjuvant Systems containing two immunostimulants: 3--desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01-containing vaccines have been approved and administered to millions of individuals worldwide.
View Article and Find Full Text PDFThe mechanisms by which antibodies confer protection vary across vaccines, ranging from simple neutralization to functions requiring innate immune recruitment via Fc-dependent mechanisms. The role of adjuvants in shaping the maturation of antibody-effector functions remains under investigated. Using systems serology, we compared adjuvants in licensed vaccines (AS01/AS01/AS03/AS04/Alum) combined with a model antigen.
View Article and Find Full Text PDFTranscriptional responses to adjuvanted vaccines can vary substantially among populations. Interindividual diversity in levels of pathogen exposure, and thus of cell-mediated immunological memory at baseline, may be an important determinant of population differences in vaccine responses. Adjuvant System AS01 is used in licensed or candidate vaccines for several diseases and populations, yet the impact of pre-existing immunity on its adjuvanticity remains to be elucidated.
View Article and Find Full Text PDFBackground: Malaria remains a key cause of mortality in low-income countries. RTS,S/AS01 is currently the most advanced malaria vaccine, demonstrating ∼50% efficacy in controlled human malaria infection (CHMI) studies in malaria-naive adults and ∼30%-40% efficacy in field trials in African infants and children. However, a higher vaccine efficacy is desirable.
View Article and Find Full Text PDFEmulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses.
View Article and Find Full Text PDFGene expression data is commonly used in vaccine studies to characterize differences between treatment groups or sampling time points. Group-wise comparisons of the transcriptional perturbations induced by vaccination have been applied extensively for investigating the mechanisms of action of vaccines. Such approaches, however, may not be sensitive enough for detecting changes occurring within a minority of the population under investigation or in single individuals.
View Article and Find Full Text PDFRTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens.
View Article and Find Full Text PDFFront Big Data
June 2021
RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development.
View Article and Find Full Text PDFThe current routine use of adjuvants in human vaccines provides a strong incentive to increase our understanding of how adjuvants differ in their ability to stimulate innate immunity and consequently enhance vaccine immunogenicity. Here, we evaluated gene expression profiles in cells from whole blood elicited in naive subjects receiving the hepatitis B surface antigen formulated with different adjuvants. We identified a core innate gene signature emerging 1 day after the second vaccination and that was shared by the recipients of vaccines formulated with adjuvant systems AS01, AS01, or AS03.
View Article and Find Full Text PDFVaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic.
View Article and Find Full Text PDFWe have read the publication of Molina-Franky and colleagues on Plasmodium falciparum pre-erythrocytic stage vaccine development (Malaria Journal, 2020;19:56). The commentary revises some of their statements on the RTS,S/AS01 vaccine that are considered either imprecise or incorrect.
View Article and Find Full Text PDFNovel adjuvant technologies have a key role in the development of next-generation vaccines, due to their capacity to modulate the duration, strength and quality of the immune response. The AS01 adjuvant is used in the malaria vaccine RTS,S/AS01 and in the licensed herpes-zoster vaccine (Shingrix) where the vaccine has proven its ability to generate protective responses with both robust humoral and T-cell responses. For many years, animal models have provided insights into adjuvant mode-of-action (MoA), generally through investigating individual genes or proteins.
View Article and Find Full Text PDFTissue residency is considered a defining feature of the innate lymphoid cell (ILC) populations located within mucosal and adipose tissues. ILCs are also present within all lymphoid tissues, but whether ILCs migrate between lymphoid and nonlymphoid sites and in what context is poorly understood. To determine whether migratory ILCs exist within peripheral lymph nodes (LNs), we labeled all cells within the brachial LN (bLN) of transgenic mice expressing a photoconvertible fluorescent protein by direct exposure to light.
View Article and Find Full Text PDFFront Immunol
May 2019
Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.
View Article and Find Full Text PDFCombining immunostimulants in adjuvants can improve the quality of the immune response to vaccines. Here, we report a unique mechanism of molecular and cellular synergy between a TLR4 ligand, 3--desacyl-4'-monophosphoryl lipid A (MPL), and a saponin, QS-21, the constituents of the Adjuvant System AS01. AS01 is part of the malaria and herpes zoster vaccine candidates that have demonstrated efficacy in phase III studies.
View Article and Find Full Text PDFThe RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority.
View Article and Find Full Text PDFSaponins represent a promising class of vaccine adjuvant. Together with the TLR4-ligand MPL, QS-21 is part of the Adjuvant System AS01, a key component of the malaria and zoster candidate vaccines that display demonstrated clinical efficacy. However, the mechanism of action of QS-21 in this liposomal formulation is poorly understood.
View Article and Find Full Text PDFNOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators.
View Article and Find Full Text PDFProtection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens.
View Article and Find Full Text PDF