Publications by authors named "Margarita Valero"

Background: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1.

View Article and Find Full Text PDF

Hypotheses: Bile salts (BS) are biosurfactants released into the small intestine, which play key and contrasting roles in lipid digestion: they adsorb at interfaces and promote the adsorption of digestive enzymes onto fat droplets, while they also remove lipolysis products from that interface, solubilising them into mixed micelles. Small architectural variations on their chemical structure, specifically their bile acid moiety, are hypothesised to underlie these conflicting functionalities, which should be reflected in different aggregation and solubilisation behaviour.

Experiments: The micellisation of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ by one hydroxyl group on the bile acid moiety, was assessed by pyrene fluorescence spectroscopy, and the morphology of aggregates formed in the absence and presence of fatty acids (FA) and monoacylglycerols (MAG) - typical lipolysis products - was resolved by small-angle X-ray/neutron scattering (SAXS, SANS) and molecular dynamics simulations.

View Article and Find Full Text PDF

Gram-negative bacteria possess numerous defenses against antibiotics, due to the intrinsic permeability barrier of their outer membrane (OM), explaining the recalcitrance of some common and life-threatening infections. We report the formulation of a new drug, PPA148, which shows promising activity against all Gram-negative bacteria included in the ESKAPEE pathogens. PPA148 was solubilized by inclusion complexation with cyclodextrin followed by encapsulation in liposomes.

View Article and Find Full Text PDF

Polymeric micelles, in particular PEO-PPO-based Pluronic, have emerged as promising drug carriers, while cyclodextrins (CD), cyclic oligosaccharides with an apolar cavity, have long been used for their capacity to form inclusion complexes with drugs. Dimethylated β-cyclodextrin (DIMEB) has the capacity to fully breakup F127 Pluronic micelles, while this effect is substantially hindered if drugs are loaded within the micellar aggregates. Four drugs were studied at physiological temperature: lidocaine (LD), pentobarbital sodium salt (PB), sodium naproxen (NP), and sodium salicylate (SAL); higher temperatures shift the equilibrium toward higher drug partitioning and lower drug/CD binding compared to 25 °C ( Valero, M.

View Article and Find Full Text PDF

We report the effect of native cyclodextrins (α, β, and γ) and selected derivatives in modulating the self-assembly of the nonionic surfactant polyoxyethylene cholesteryl ether (ChEO10) and its mixtures with triethylene glycol monododecyl ether (C12EO3), which form wormlike micelles. Cyclodextrins (CDs) generally induce micellar breakup through a host-guest interaction with surfactants; instead, we show that a constructive effect, leading to gel formation, is obtained with specific CDs and that the widely invoked host-guest interaction may not be the only key to the association. When added to wormlike micelles of ChEO10 and C12EO3, native β-CD, 2-hydroxyethyl-β-CD (HEBCD), and a sulfated sodium salt of β-CD (SULFBCD) induce a substantial increase of the viscoelasticity, while methylated CDs rupture the micelles, leading to a loss of the viscosity, and the other CDs studied (native α- and γ- and hydroxypropylated CDs) show a weak interaction.

View Article and Find Full Text PDF

We report the influence of five β-cyclodextrin (β-CD) derivatives, namely: randomly methylated β-cyclodextrin (MBCD), heptakis (2,6-di-O-methyl)-β-cyclodextrin (DIMEB), heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TRIMEB), 2-hydroxyethyl-β-cyclodextrin (HEBCD) and 2-hydroxypropyl-β-cyclodextrin (HPBCD), on the self-assembly of mixtures of nonionic surfactants: polyoxyethylene cholesteryl ether (ChEO10) and monocaprylin (MCL). Mixtures of ChEO10/MCL in water form highly viscoelastic wormlike micelle solutions (WLM) over a range of concentrations; herein, the composition was fixed at 10 wt % ChEO10/3 wt % MCL. The addition of methylated β-CDs (MBCD, DIMEB, TRIMEB) induced a substantial disruption of the solid-like viscoelastic behavior, as shown from a loss of the Maxwell behavior, a large reduction in G' and G″ in oscillatory frequency-sweep measurements, and a drop of the viscosity.

View Article and Find Full Text PDF

Spectroscopic measurements (uv/vis absorbance and fluorescence) and time-resolved small-angle neutron scattering experiments (TR-SANS) were used to follow the breakdown of Pluronic micelles by heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) over time in order to elucidate the mechanism of micellar rupture, generally attributed to polypseudotorotaxane (PR) formation between the cyclodextrin and the central hydrophobic PPO block. The spectroscopic measurements with two different probes (methyl orange and nile red) suggest that very rapid changes (on the order of seconds) take place when mixing DIMEB with F127 Pluronic and that no displacement of the probe from the cyclodextrin cavity occurs, which is in disagreement with PR formation. TR-SANS measurements demonstrate for the first time that the micelles are broken down in less than 100 ms, which categorically rules out PR formation as the mechanism of rupture.

View Article and Find Full Text PDF

The triblock-copolymer poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) (PEO-PPO-PEO), referred to as Pluronic, is widely studied for its unique aggregation properties and its applications in drug delivery and targeting. In previous studies [Dreiss, C. A.

View Article and Find Full Text PDF

The associative structures between F127 Pluronic micelles and four drugs, namely, lidocaine (LD), pentobarbital sodium salt (PB), sodium naproxen (NP), and sodium salicylate (SAL), were studied by small-angle neutron scattering (SANS). Different outcomes for the micellar aggregates are observed, which are dependent on the chemical nature of the drug and the presence of charge or otherwise: the micelles grow with LD, are hardly modified with PB, and decrease in size with both NP and SAL. The partition coefficient, determined by fluorescence spectroscopy, is directly correlated to the amount of charge, following NP approximately SAL < PB < LD.

View Article and Find Full Text PDF

Dynamic light scattering and Cryo-TEM measurements have allowed us to obtain the size and structure of spontaneous aggregates formed by mixtures of Aerosol OT, AOT, and ethylene glycol polymers of different molecular mass. The results presented in this work show that small unilamellar vesicles predominate in pure Aerosol OT solutions and in dilute polymer solutions mixed with AOT. In the latter case, elongated micelles coexist with unilamellar vesicles.

View Article and Find Full Text PDF

The effect of the polyvinylpyrrolidone and/or hydroxypropyl-beta-cyclodextrin on the photo-lability of aqueous solutions of the anti-inflammatory drug Naproxen was studied. Kinetic studies revealed that the presence of all of these additives reduced drug photodegradation. In all cases, the presence of the different additives elicited a change in the photomixture composition, being the alcoholic derivative the major photoproduct formed.

View Article and Find Full Text PDF

The properties of the interface of vesicles of pure sodium bis-(2-ethyl-hexyl) sulfosuccinate (AOT) and binary mixtures composed of AOT with poly(ethylene) glycol (PEG), poly(sodium 4-styrensulfonate) (PSS) and sodium chloride were investigated using absorption and steady-state fluorescence of nabumetone and electrophoretic mobility measurements. Results confirm those obtained in a previous work indicating that the addition of PEG, PSS, and NaCl stabilizes the AOT vesicles. The stabilization mechanism is the screening of the surface charge in the case of binary mixtures of AOT/PSS and AOT/NaCl and the polymer adsorption on the interface for vesicles of AOT/PEG.

View Article and Find Full Text PDF

The effect of the polyethylene glycol and/or beta-cyclodextrin on the photolability of aqueous solutions of the anti-inflammatory drug Naproxen was studied. In all systems studied, the photodegradation process followed zero-order kinetics, leading to the same photoproducts as in the absence of these additives. Kinetic studies revealed that the presence of polyethylene glycol (PEG) reduced drug photodegradation (phi=0.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of the presence of the water-soluble polymer polyethylene glycol (PEG)-MW=35000 g/mol-on the complexation of the phototoxic anti-inflammatory drug naproxen, in its sodium salt form, with beta-cyclodextrin (beta-CD). The data revealed that the polymer does not interact with the uncomplexed naproxen whereas it does with the beta-CD. The presence of different proportions of PEG, in the 0-1% (w/w) range, systematically lowers K(app) of the formation of the naproxen:beta-CD inclusion complex.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of the presence of the water-soluble polymer polyvinylpyrrolidone K-25 (MW=24000g/mol) on the complexation of the AINE naproxen, in its sodium salt form, with the beta-cyclodextrin. The data revealed that the polyvinylpyrrolidone K-25 interacts with the drug as well as with the drug:beta-cyclodextrin inclusion complex. The polymer shows more affinity for the inclusion complex, K=(6.

View Article and Find Full Text PDF