Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments.
View Article and Find Full Text PDFAutophagy constitutes an essential process triggered by oxidative stress that enables cells to recycle damaged biomolecules and organelles, which is eventually traced by immunodetection with anti-ATG8. In parallel with autophagy induction, carbon metabolism in Chlamydomonas reinhardtii under abiotic stress is diverged toward lipid biosynthesis and lipid droplet accumulation, which can be analyzed by a simple thin-layer chromatography and in vivo staining with the fluorescent probe BODIPY 493/503. We show the responses in Chlamydomonas cells exposed to mercury or cadmium (0-50 μM doses), as examples of oxidative stress-mediated changes in autophagy and lipid metabolism, monitored with the procedures described in this report.
View Article and Find Full Text PDF