Mesoporous hydroxyapatite (HA) is widely used in various applications, such as the biomedical field, as a catalytic, as a sensor, and many others. The aim of this work was to obtain HA powders by means of chemical precipitation in a medium containing a polymer-polyvinyl alcohol or polyvinylpyrrolidone (PVP)-with concentrations ranging from 0 to 10%. The HA powders were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic emission spectroscopy with inductively coupled plasma, electron paramagnetic resonance, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFHigh-spin defects (color centers) in wide-gap semiconductors are considered as a basis for the implementation of quantum technologies due to the unique combination of their spin, optical, charge, and coherent properties. A silicon carbide (SiC) crystal can act as a matrix for a wide variety of optically active vacancy-type defects, which manifest themselves as single-photon sources or spin qubits. Among the defects, the nitrogen-vacancy centers () are of particular importance.
View Article and Find Full Text PDFOptically active point defects in semiconductors have received great attention in the field of solid-state quantum technologies. Hexagonal boron nitride, with an ultra-wide band gapEg= 6 eV, containing a negatively charged boron vacancy (VB-) with unique spin, optical, and coherent properties presents a new two-dimensional platform for the implementation of quantum technologies. This work establishes the value ofVB-spin polarization under optical pumping with= 532 nm laser using high-frequency (= 94 GHz) electron paramagnetic resonance (EPR) spectroscopy.
View Article and Find Full Text PDFGadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.
View Article and Find Full Text PDFThis research work presents an analysis of the process of an implant's osseointegration to the jawbone tissue. The purpose of this work was to describe the processes of assimilation and the biochemical dynamics which occur during dental implantation using implants with different macro-microstructure surfaces at the level of stable free radicals using the electron paramagnetic resonance (EPR) method. The experimental investigation was conducted on seven Vietnamese minipigs over twelve months old and weighing up to 30 kg using implants with various macro-microstructure surfaces (SLA, RBM, and HST) and implantation systems, namely the Adin, Sunran, Biomed, and Osstem systems.
View Article and Find Full Text PDF