The study of halogen bonds (XBs) has been a subject of great interest in recent years due to its clear application in catalysis, liquid crystals, and crystal engineering. In this study, we analyzed the intermolecular interactions, in particular halogen bonds in BODIPYs with an increasing number of bromine atoms. The computational study included analyses through three different methods: the first approach of close contacts provided by mercury, then the expanded approach of the electron density partition of the molecules in the crystals provided by the analysis of Hirshfeld surfaces, and finally, the approach of the Quantum Theory of Atoms in Molecules (QT-AIM) to characterize the non-covalent interactions through finding electron density critical points between atoms and between neighboring molecules.
View Article and Find Full Text PDFThe aim of this study was to determine the survival of human pathogens (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) in five natural mineral waters (NMWs) with different properties and mineralization levels. Five NMWs from four Spanish spas with different dry residue at 110 °C were used: A = 76,935 mg/L; B = 1,827 mg/L; C = 808.4 mg/L; D = 283.
View Article and Find Full Text PDFThe search for voluminous stators that may accommodate large rotator units and speed rotational dynamics in the solid state led us to investigate a simple and efficient method for the synthesis of molecular rotors with tert-butyldiphenylsilyl-protected (TBDPS) triphenylmethyl stators. Additionally, solid state characterization of these systems with two-, four-, and six-TBDPS groups provided us with a description of their crystallinity and thermal stability. Among them, molecular rotor 7c with the largest and most symmetric stator resulting from six peripheral silyl groups showed the best tendency to crystallize, and the study of its isotopologue 7c-d(4) by solid state (2)H NMR revealed a 2-fold motion of the 1,4-diethynylphenylene-d(4) rotator in the kHz regime.
View Article and Find Full Text PDFWe describe the solid-state dynamics of a molecular rotator (2) consisting of a p-phenylene rotor flanked by two ethynyl steroidal moieties that act as a stator. Single-crystal X-ray diffraction analysis of polymorph I revealed a packing motif containing 1D columns of nested rotors arranged in helical arrays (space group P3(2)) with the central phenylenes disordered over two sites related by an 85° rotation about their 1,4-axes. Unexpected line shapes in quadrupolar-echo (2)H NMR measurements between 155 and 296 K for the same polymorph with a deuterated phenylene isotopologue (2-d(4)) were simulated by trajectories involving fast (>10(8) s(-1)) 180° rotation (twofold flips) in each of the two rotationally disordered sites and slower exchange (2 × 10(4) to 1.
View Article and Find Full Text PDFIn this article we describe the synthesis and dynamic behavior of two new molecular rotors with 1,4-diethynylphenylene rotators axially linked to two conformationally rigid steroidal norethisterone acetate or ethisterone frames. The resulting 1,4-bis(19-nor-17alpha-ethynyltestosterone-17beta-acetate)benzene (1) and 1,4-bis(17alpha-ethynyltestosterone)benzene (2) were fully characterized in solution and in the solid state, and the rotational dynamics of the central phenylene were explored with the help of (13)C NMR with cross polarization and magic angle spinning (CPMAS), and with quadrupolar echo variable temperature (VT) (2)H NMR in the case of 1. Splitting of signals from the aromatic ring on the (13)C CPMAS NMR and a broad quadrupolar spin echo (2)H spectrum of polycrystalline samples indicated that the rotation of the central aromatic ring in these compounds was limited at ambient temperature in the solid state.
View Article and Find Full Text PDFThe role of the endoplasmic reticulum stress-regulated kinase, PERK, in mammary gland function was assessed through generation of a targeted deletion in mammary epithelium. Characterization revealed that PERK is required for functional maturation of milk-secreting mammary epithelial cells. PERK-dependent signaling contributes to lipogenic differentiation in mammary epithelium, and perk deletion inhibits the sustained expression of lipogenic enzymes FAS, ACL, and SCD1.
View Article and Find Full Text PDFThe 42-kDa processed fragment of Plasmodium falciparum merozoite surface protein 1 (MSP-1(42)) is a prime candidate for a blood-stage malaria vaccine. Merozoite surface protein 8 contains two C-terminal epidermal growth factor (EGF)-like domains that may function similarly to those of MSP-1(42). Immunization with either MSP-1 or MSP-8 induces protection that is mediated primarily by antibodies against conformation-dependent epitopes.
View Article and Find Full Text PDFThe control of Plasmodium falciparum malaria by vaccination will require immunization with multiple parasite antigens effectively formulated in combination. In this regard, proteins expressed on the surface of blood-stage merozoites are attractive as vaccine targets given their functional importance in the invasion of erythrocytes and accessibility to serum antibodies. We have utilized a Plasmodium chabaudi vaccine model to begin to evaluate the efficacy of immunization with combined formulations of apical membrane antigen-1 (AMA-1) and merozoite surface protein-1 (MSP-1).
View Article and Find Full Text PDF