Introduction: Activated protein C (APC) induces release of microparticles (MP) from primary physiological cells, which are found in patients undergoing treatment with recombinant human APC (rhAPC) for severe sepsis. We hypothesised that APC on these circulating MPs activate endothelial protease-activated receptor 1 (PAR1) to induce anti-apoptotic and anti-inflammatory properties that can improve patient outcome.
Methods: This was an experimental study on clinical samples in an intensive care setting, and included patients with severe sepsis who fulfilled criteria for treatment with rhAPC.
Background: The endothelial protein C receptor plays an important role within the protein C pathway in regulating coagulation and inflammation. Recently, we described that endothelial protein C receptor can be released in vitro in microparticulate form from primary endothelial cells by exogenous activated protein C. Activated protein C bound to this endothelial protein C receptor retains anticoagulant activity and we hypothesize that this microparticulate endothelial protein C receptor-activated protein C complex can also cleave endothelial protease-activated receptor 1 to modulate inflammation and increase cell survival.
View Article and Find Full Text PDFActivated protein C (APC) treatment is now used for patients with severe sepsis. We investigated its effect in vitro on primary, physiologically relevant cells and demonstrate a novel mechanism of endothelial protein C receptor (EPCR) release that is not inhibited by metalloproteinase inhibitors. Exposure of human umbilical vein endothelial cells or monocytes to APC (6.
View Article and Find Full Text PDF