The cricket paralysis virus (CrPV) uses an internal ribosomal entry site (IRES) to hijack the ribosome. In a remarkable RNA-based mechanism involving neither initiation factor nor initiator tRNA, the CrPV IRES jumpstarts translation in the elongation phase from the ribosomal A site. Here, we present cryoelectron microscopy (cryo-EM) maps of 80S⋅CrPV-STOP ⋅ eRF1 ⋅ eRF3 ⋅ GMPPNP and 80S⋅CrPV-STOP ⋅ eRF1 complexes, revealing a previously unseen binding state of the IRES and directly rationalizing that an eEF2-dependent translocation of the IRES is required to allow the first A-site occupation.
View Article and Find Full Text PDFSome viruses exploit internal initiation for their propagation in the host cell. This type of initiation is facilitated by structured elements (internal ribosome entry site, IRES) upstream of the initiator AUG and requires only a reduced number of canonical initiation factors. An important example are IRES of the virus family Dicistroviridae that bind to the inter-subunit side of the small ribosomal 40S subunit and lead to the formation of elongation-competent 80S ribosomes without the help of any initiation factor.
View Article and Find Full Text PDF