Publications by authors named "Margarita L Rodrigo-Angulo"

Recent evidence supports that specific projections between different basal forebrain (BF) nuclei and their cortical targets are necessary to modulate cognitive functions in the cortex. We tested the hypothesis of the existence of specific neuronal populations in the BF linking with specific sensory, motor, and prefrontal cortices in rats. Neuronal tracing techniques were performed using retrograde tracers injected in the primary somatosensory (S1), auditory (A1), and visual (V1) cortical areas, in the medial prefrontal cortex (mPFC) as well as in BF nuclei.

View Article and Find Full Text PDF

Sensory processing in the cortex should integrate inputs arriving from receptive fields located on both sides of the body. This role could be played by the corpus callosum through precise projections between both hemispheres. However, different studies suggest that cholinergic projections from the basal forebrain (BF) could also contribute to the synchronization and integration of cortical activities.

View Article and Find Full Text PDF

The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep).

View Article and Find Full Text PDF

The cat ventral oral pontine reticular nucleus (vRPO) is responsible for the generation and maintenance of rapid eye movement (REM) sleep. Hypothalamic neurons containing the peptide hypocretin-1 (also called orexin-A) which will be herewith defined as orexinergic (Orx) neurons, occupy a pre-eminent place in the integration and stabilization of arousal networks as well as in the physiopathology of narcolepsy/cataplexy. In the previous investigations, low-volume and dose microinjections of hypocretin-1 in cat vRPO produced a specific and significant suppression of REM sleep.

View Article and Find Full Text PDF

The ventral part of the oral pontine reticular nucleus (vRPO) is a demonstrated site of brainstem REM-sleep generation and maintenance. The vRPO has reciprocal connections with structures that control other states of the sleep-wakefulness cycle, many situated in the basal forebrain and the diencephalon. Some of these connections utilize the inhibitory neurotransmitter GABA.

View Article and Find Full Text PDF

The ventral part of the cat oral pontine reticular nucleus (vRPO) is the site in which microinjections of small dose and volume of cholinergic agonists produce long-lasting rapid eye movement sleep with short latency. The present study determined the precise location and proportions of the cholinergic brainstem neuronal population that projects to the vRPO using a double-labeling method that combines the neuronal tracer horseradish peroxidase-wheat germ agglutinin with choline acetyltransferase immunocytochemistry in cats. Our results show that 88.

View Article and Find Full Text PDF

This article reviews the central nervous mechanisms involved in the broad network that generates and maintains REM sleep. Experimental investigations have identified the pontine tegmentum as the critical substrate for REM sleep mechanisms. Several pontine structures are involved in the generation of each particular polygraphic event that characterizes REM sleep: desynchronization in the electroencephalogram, theta rhythm in the hippocampus, muscle atonia, pontogeniculooccipital waves and rapid eye movements.

View Article and Find Full Text PDF