Antimicrobial peptides (AMPs) have emerged as promising candidates in combating antimicrobial resistance - a growing issue in healthcare. However, to develop AMPs into effective therapeutics, a thorough analysis and extensive investigations are essential. In this study, we employed an approach to design cationic AMPs , followed by their experimental testing.
View Article and Find Full Text PDFIn the present study the role of poly(ADP)ribosylation on rubitecan induced caspase dependent cell death was evaluated. We show that Top1 poisoning by rubitecan induces caspase mediated apoptosis which was reduced by PARP inhibitor olaparib in zebrafish embryo. Collectively our data introduces zebrafish as a valuable model for PARP related biomedical research.
View Article and Find Full Text PDFTopoisomerase poisons are known to stabilize covalent enzyme-DNA intermediates forming covalent cleavage complexes, which are highly cytotoxic especially for dividing cells and thus, make topoisomerases targets for cancer therapy. Topoisomerases have been extensively studied in mammalian model systems, whereas in other vertebrate models including zebrafish, they still remain less characterized. Here we show similarities in the genotoxic effects of zebrafish and mammalian systems towards topoisomerase I (Top1) poisons and PARP inhibitor - olaparib.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability remains a challenge. Such design requires computational modeling of antimicrobial properties.
View Article and Find Full Text PDF