Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations.
View Article and Find Full Text PDFUsing double immunofluorescence labeling, quantitative ratio between parvalbumin- and calbindin-containing neurons, neurons that co-localize both peptides, as well as the intensity of their immunoreactivities were studied in the brainstem, midbrain and forebrain auditory centers of two chelonian species, Testudo horsfieldi and Emys orbicularis. In the spiral ganglion and first-order cochlear nuclei, highly immunoreactive parvalbumin-containing neurons predominated, and almost all neurons in these nuclei also exhibited weak immunoreactivity to calbindin. The number of strongly calbindin-immunoreactive (-ir) cells increased in the second-order brainstem auditory centers (the laminar cochlear nucleus, superior olivary complex, lateral lemniscal nucleus), and co-localization with parvalbumin in some of them was observed.
View Article and Find Full Text PDFThe distribution of immunoreactivity to the calcium-binding proteins parvalbumin, calbindin and calretinin and of cytochrome oxidase activity was studied in the mesencephalic (torus semicircularis), thalamic (nucleus reuniens) and telencephalic (ventromedial part of the anterior dorsal ventricular ridge) auditory centres of two chelonian species Emys orbicularis and Testudo horsfieldi. In the torus semicircularis, the central nucleus (core) showed intense parvalbumin immunoreactivity and high cytochrome oxidase activity, whereas the laminar nucleus (belt) showed low cytochrome oxidase activity and dense calbindin/calretinin immunoreactivity. Within the central nucleus, the central and peripheral areas could be distinguished by a higher density of parvalbumin immunoreactivity and cytochrome oxidase activity in the core than in the peripheral area.
View Article and Find Full Text PDFThe nucleus rotundus of the turtles Emys orbicularis and Testudo horsfieldi was analysed by axonal tracing methods and post-embedding GABA immunocytochemistry. After injections of horseradish peroxidase or biotinylated dextran amine into the optic tectum, electron microscopic observations showed that the vast majority of ipsilateral tectorotundal axon terminals were small in size, had smooth contours and contained small, round, densely packed synaptic vesicles. These terminals were GABA-immunonegative, often gathered in clusters, and established asymmetrical synaptic contacts with either small- or medium-sized GABA-negative dendritic profiles and with GABA-immunoreactive (GABA-ir) dendrites, which did not contain synaptic vesicles.
View Article and Find Full Text PDF