Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively "multipollutant" manner, with the idealized goal of controlling as many air contaminants as possible in an integrated manner to achieve the greatest total reduction of adverse health and environmental impacts. This commentary considers the current ability of the environmental air pollution exposure and health research communities to provide evidence to inform the development of multipollutant air quality management strategies and assess their effectiveness.
View Article and Find Full Text PDFPrevious studies have used particle mass and size as metrics to link airborne particles with deleterious health effects. Recent evidence suggests that particle composition can play an important role in PM-toxicity; however, little is known about the specific participation of components (individually or acting in groups) present in such a complex mixture that accounts for toxicity. This work explores relationships among PM(10) components in order to identify their covariant structure and how they vary in three sites in Mexico City.
View Article and Find Full Text PDFWe evaluated whether associations between PM10 and daily mortality in Mexico City differ by the PM10 measurement device or by regional differences in particle composition. Additionally, we reanalyzed previously collected data in light of recent insights about flaws in commonly used time series analysis techniques. We examined daily associations between mortality and four indicators of ambient PM10 using Poisson regression, controlling for temperature and time trends with cubic natural splines.
View Article and Find Full Text PDF