The generation of human stem cell-derived spheroids and organoids represents a major step in solving numerous medical, pharmacological, and biological challenges. Due to the advantages of three-dimensional (3D) cell culture systems and the diverse applications of human pluripotent stem cell (iPSC)-derived definitive endoderm (DE), we studied the influence of spheroid size and 3D cell culture systems on spheroid morphology and the effectiveness of DE differentiation as assessed by quantitative PCR (qPCR), flow cytometry, immunofluorescence, and computational modeling. Among the tested hydrogel-based 3D systems, we found that basement membrane extract (BME) hydrogel could not retain spheroid morphology due to dominant cell-matrix interactions.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place.
View Article and Find Full Text PDFBackground: Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression.
Methods: To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells.