Objectives: Before the Amsterdam Placental Workshop Group Consensus Statement, standardization in placental pathology assessment did not exist. This study evaluated the Amsterdam criteria's utility in correlating ischemic placental disease (IPD) with placental pathologic lesions in a cohort of largely unsubmitted term placentas with favorable outcomes.
Methods: In this prospective case-controlled study at a single institution, all placentas were examined using Amsterdam protocols for gross sampling and microscopic review by 2 reviewers who were blinded to clinical history.
In a prospective cohort of subjects who subsequently developed preeclampsia (PE, n = 14) versus remaining healthy (NORM, n = 12), early gestation circulating extracellular vesicles (EVs) containing a panel of microRNA signatures were characterized and their biological networks of targets deciphered. Multiple microRNAs of which some arose from the placenta (19MC and 14MC) demonstrated changes in association with advancing gestation, while others expressed were pathognomonic of the subsequent development of characteristic clinical features of PE which set in as a late-onset subtype. This panel of miRNAs demonstrated a predictability with an area under the curve of 0.
View Article and Find Full Text PDFIntroduction: To characterize early-gestation changes in placental structure, perfusion, and oxygenation in the context of ischemic placental disease (IPD) as a composite outcome and in individual sub-groups.
Methods: In a single-center prospective cohort study, 199 women were recruited from antenatal clinics between February 2017 and February 2019. Maternal magnetic resonance imaging (MRI) studies of the placenta were temporally conducted at two timepoints: 14-16 weeks gestational age (GA) and 19-24 weeks GA.
Objective: The aim of Placental Assessment in Response to Environmental Pollution Study (PARENTs) was to determine whether imaging of the placenta by novel multiparametric magnetic resonance imaging (MRI) techniques in early pregnancy could help predict adverse pregnancy outcomes (APOs) due to ischemic placental disease (IPD). Additionally, we sought to determine maternal characteristics and environmental risk factors that contribute to IPD and secondary APOs.
Study Design: Potential patients in their first trimester of pregnancy, who agreed to MRI of the placenta and measures of assessment of environmental pollution, were recruited into PARENTs, a prospective population-based cohort study.
We undertook a prospective temporal study collecting blood samples from consenting pregnant women, to test the hypothesis that circulating extracellular vesicles (EVs) carrying specific non-coding microRNA signatures can underlie gestational diabetes mellitus (GDM). To test this hypothesis, miRNA cargo of isolated and characterized EVs revealed contributions from the placenta and differential expression at all three trimesters and at delivery between pregnant and non-pregnant states. Many miRNAs originate from the placental-specific chromosome 19 microRNA cluster (19MC) and chromosome 14 microRNA cluster (14MC).
View Article and Find Full Text PDFBackground: Intrauterine growth restriction (IUGR) results from a lack of nutrients transferred to the developing fetus, particularly oxygen and glucose. Increased expression of the cytoprotective mitochondrial peptide, humanin (HN), and the glucose transporter 8, GLUT8, has been reported under conditions of hypoxic stress. However, the presence and cellular localization of HN and GLUT8 in IUGR-related placental pathology remain unexplored.
View Article and Find Full Text PDFContext: Biochemical weakening of the amnion is a major factor preceding preterm premature rupture of membranes (PPROMs), leading to preterm birth. Activation of matrix metalloproteinases (MMPs) is known to play a key role in collagen degradation of the amnion; however, epithelial to mesenchymal transition (EMT) that is also induced by MMP activation has not been investigated as a mechanism for amnion weakening.
Objective: To measure amniotic EMT associated with vaginal delivery (VD) compared with unlabored cesarean sections (CSs), and to assess changes in amniotic mechanical strength with pharmacologic inhibitors and inducers of EMT, thus testing the hypothesis that EMT is a key biochemical event that promotes amniotic rupture.
Using mice that lack recombination activating gene-2 (Rag2), we have found that bone marrow-derived plasmacytoid dendritic cells (pDCs) as main producers of interferon-α (IFNα) require Rag2 for normal development. This is a novel function for Rag2, whose classical role is to initiate B and T cell development. Here we showed that a population of common progenitor cells in the mouse bone marrow possessed the potential to become either B cells or pDCs upon appropriate stimulations, and the lack of Rag2 hindered the development of both types of progeny cells.
View Article and Find Full Text PDFWe previously showed that broadly neutralizing anti-HIV-1 antibody 2G12 (human IgG1) naturally forms dimers that are more potent than monomeric 2G12 in in vitro neutralization of various strains of HIV-1. In this study, we have investigated the protective effects of monomeric versus dimeric 2G12 against HIV-1 infection in vivo using a humanized mouse model. Our results showed that passively transferred, purified 2G12 dimer is more potent than 2G12 monomer at preventing CD4 T cell loss and suppressing the increase of viral load following HIV-1 infection of humanized mice.
View Article and Find Full Text PDF