Publications by authors named "Margarida Casal"

Altered glycolytic metabolism has been associated with chemoresistance in acute myeloid leukemia (AML). However, there are still aspects that need clarification, as well as how to explore these metabolic alterations in therapy. In the present study, we aimed to elucidate the role of glucose metabolism in the acquired resistance of AML cells to cytarabine (Ara-C) and to explore it as a therapeutic target.

View Article and Find Full Text PDF

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter.

View Article and Find Full Text PDF

Chitinases are widely studied enzymes that have already found widespread application. Their continued development and valorisation will be driven by the identification of new and improved variants and/or novel applications bringing benefits to industry and society. We previously identified a novel application for chitinases wherein the Candida albicans cell wall surface chitinase 3 (Cht3) was shown to have potential in vaccine applications as a subunit antigen against fungal infections.

View Article and Find Full Text PDF

Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a strain able to strongly overproduce succinic acid from glycerol and CO in which the Dct-02 transporter from , assumed to be an anion channel, was used to export succinic acid from the cells. In a different study, we reported a new group of succinic acid transporters from the AceTr family, which were also described as anion channels.

View Article and Find Full Text PDF

Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans.

View Article and Find Full Text PDF

In this study, novel antimicrobial biocomposite films comprising a genetically engineered silk-elastin protein polymer (SELP) and essential oil from (MP) have been fabricated and tested for the antibacterial performance. SELP/MP biocomposite films were prepared by solvent casting using water as the solvent and aqueous emulsions of MP at different concentrations. Emulsions of MP were investigated, showing that the mixing method, relative amount of surfactant, and the presence of SELP influence particle size and homogeneity.

View Article and Find Full Text PDF

The yeast has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in .

View Article and Find Full Text PDF

Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in wine strains, but not in strains from other environments. In the wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine.

View Article and Find Full Text PDF

Antimicrobial resistance is an increasing global threat, demanding new therapeutic biomolecules against multidrug-resistant bacteria. Antimicrobial peptides (AMPs) are promising candidates for a new generation of antibiotics, but their potential application is still in its infancy, mostly due to limitations associated with large-scale production. The use of recombinant DNA technology for the production of AMPs fused with polymer tags presents the advantage of high-yield production and cost-efficient purification processes at high recovery rates.

View Article and Find Full Text PDF

Aiming at improving the transport of biotechnologically relevant carboxylic acids in engineered microbial cell factories, the focus of this work was to study plasma membrane transporters belonging to the Acetate Uptake Transporter (AceTr) family. Ato1 and SatP, members of this family from and respectively, are the main acetate transporters in these species. The analysis of conserved amino acid residues within AceTr family members combined with the study of Ato1 3D model based on SatP, was the rationale for selection of site-directed mutagenesis targets.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the complete set of proteins involved in transport of lactic acid across the cell membrane has not been determined. In this study, we aimed to identify transport proteins not previously described to be involved in lactic acid transport via a combination of directed evolution, whole-genome resequencing and reverse engineering. Evolution of a strain lacking all known lactic acid transporters on lactate led to the discovery of mutated Ato2 and Ato3 as two novel lactic acid transport proteins.

View Article and Find Full Text PDF

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g.

View Article and Find Full Text PDF

The increasing bacterial resistance to antibiotics is driving strong demand for new antimicrobial biomaterials. This work describes the fabrication of free-standing films exhibiting antimicrobial properties by combining, in the same polypeptide chain, an elastin-like recombinamer comprising 200 repetitions of the pentamer VPAVG (A200) and an 18-amino-acid truncated variant of the antimicrobial peptide BMAP-28, termed BMAP-18. The fusion protein BMAP-18A200 was overexpressed and conveniently purified by a simplified and scalable nonchromatographic process.

View Article and Find Full Text PDF

is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species.

View Article and Find Full Text PDF

Successful human colonizers such as Candida pathogens have evolved distinct strategies to survive and proliferate within the human host. These include sophisticated mechanisms to evade immune surveillance and adapt to constantly changing host microenvironments where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the current knowledge and recent findings highlighting the remarkable ability of medically important Candida species to overcome a broad range of host-imposed constraints and how this directly affects their physiology and pathogenicity.

View Article and Find Full Text PDF

Opportunistic pathogens such as species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in virulence.

View Article and Find Full Text PDF

In the development of drug delivery systems, researchers pursue multifunctionality to target more complex problems, while maintaining biocompatibility and high encapsulation efficiency. Herein, we describe the preparation of noncytotoxic particles with intrinsic antimicrobial properties able to entrap bioactive compounds. The particles are composed of a recombinantly produced elastin-like recombinamer functionalized with an antimicrobial peptide, and are spontaneously formed in mild conditions by exploiting the thermoresponsiveness of the elastin-like portion.

View Article and Find Full Text PDF

is an important human fungal pathogen known to trigger serious infections in immune-compromised individuals. Its ability to form biofilms, which exhibit high tolerance to antifungal treatments, has been considered as an important virulence factor. However, the mechanisms involving antifungal resistance in biofilms and the impact of host niche environments on these processes are still poorly defined.

View Article and Find Full Text PDF

In the last decades, 3-bromopyruvate (3BP) has been intensively studied as a promising anticancer and antimicrobial agent. The transport of this drug inside the cell is a critical step for its toxicity in cancer and microorganisms. The Cryptococcus neoformans is the most sensitive species of microorganisms toward 3BP.

View Article and Find Full Text PDF

Monocarboxylate transporters (MCTs) inhibition leads to disruption in glycolysis, induces cell death and decreases cell invasion, revealing the importance of MCT activity in intracellular pH homeostasis and tumor aggressiveness. 3-Bromopyruvate (3BP) is an anti-tumor agent, whose uptake occurs via MCTs. It was the aim of this work to unravel the importance of extracellular conditions on the regulation of MCTs and in 3BP activity.

View Article and Find Full Text PDF

3-Bromopyruvate (3BP) is a small, highly reactive molecule formed by bromination of pyruvate. In the year 2000, the antitumor properties of 3BP were discovered. Studies using animal models proved its high efficacy for anticancer therapy with no apparent side effects.

View Article and Find Full Text PDF

Organic acids are recognized as one of the most prevalent compounds in ecosystems, thus the transport and assimilation of these molecules represent an adaptive advantage for organisms. The AceTr family members are associated with the active transport of organic acids, namely acetate and succinate. The phylogenetic analysis shows this family is dispersed in the tree of life.

View Article and Find Full Text PDF

Colorectal Cancer (CRC) is a major cause of cancer-related death worldwide. CRC increased risk has been associated with alterations in the intestinal microbiota, with decreased production of Short Chain Fatty Acids (SCFAs). SCFAs produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch.

View Article and Find Full Text PDF

Antimicrobial materials have become relevant for local therapies preventing microbial resistance induced by systemic antibiotic treatments. This work reports the development of electrospun poly(lactic acid) (PLLA) nanofiber membranes loaded with bovine lactoferrin (bLF) up to 20 wt%. The membranes present smooth and nondefective fibers with mean diameters between 717 ± 197 and 495 ± 127 nm, and an overall porosity of ≈80%.

View Article and Find Full Text PDF

Candida albicans has the ability to adapt to different host niches, often glucose-limited but rich in alternative carbon sources. In these glucose-poor microenvironments, this pathogen expresses JEN1 and JEN2 genes, encoding carboxylate transporters, which are important in the early stages of infection. This work investigated how host microenvironments, in particular acidic containing lactic acid, affect C.

View Article and Find Full Text PDF