Publications by authors named "Margareth Sidarta"

The bactericidal activity of several antibiotics partially relies on the production of reactive oxygen species (ROS), which is generally linked to enhanced respiration and requires the Fenton reaction. Bacterial persister cells, an important cause of recurring infections, are tolerant to these antibiotics because they are in a dormant state. Here, we use Bacillus subtilis cells in stationary phase, as a model system of dormant cells, to show that pharmacological induction of membrane depolarization enhances the antibiotics' bactericidal activity and also leads to ROS production.

View Article and Find Full Text PDF

Unlabelled: Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness.

View Article and Find Full Text PDF

Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results.

View Article and Find Full Text PDF

Bacteria accumulate osmolytes to prevent cell dehydration during hyperosmotic stress. A sudden change to a hypotonic environment leads to a rapid water influx, causing swelling of the protoplast. To prevent cell lysis through osmotic bursting, mechanosensitive channels detect changes in turgor pressure and act as emergency-release valves for the ions and osmolytes, restoring the osmotic balance.

View Article and Find Full Text PDF

SpoVD and PBP4b are structurally very similar high-molecular-weight, class B penicillin-binding proteins produced early during sporulation in SpoVD is known to be essential for endospore cortex synthesis and thereby the production of heat-resistant spores. The role of PBP4b is still enigmatic. Both proteins are synthesized in the cytoplasm of the mother cell.

View Article and Find Full Text PDF