Publications by authors named "Margareta Stark"

Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied.

View Article and Find Full Text PDF

Strength, elasticity, and biocompatibility make spider silk an attractive resource for the production of artificial biomaterials. Spider silk proteins, spidroins, contain hundreds of repeated poly alanine/glycine-rich blocks and are difficult to produce recombinantly in soluble form. Most previous attempts to produce artificial spider silk fibers have included solubilization steps in nonphysiological solvents.

View Article and Find Full Text PDF

Background And Objectives: Candida species are problematic opportunistic pathogens in the hospital setting, where they are frequently associated with opportunistic infections of indwelling medical devices. There are only a few effective classes of antifungal agents currently available, and some species, such as Candida lusitaniae, Candida glabrata and Candida krusei, are intrinsically resistant to some of these drugs, further reducing existing therapeutic options. We have recently developed synthetic, non-amphipathic cationic antimicrobial peptides (CAPs) based on the structure of native hydrophobic membrane-spanning domains of integral membrane proteins.

View Article and Find Full Text PDF

Novel cationic antimicrobial peptides typified by structures such as KKKKKKAAXAAWAAXAA-NH2, where X = Phe/Trp, and several of their analogues display high activity against a variety of bacteria but exhibit no hemolytic activity even at high dose levels in mammalian erythrocytes. To elucidate their mechanism of action and source of selectivity for bacterial membranes, phospholipid mixtures mimicking the compositions of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol) were challenged with the peptides. We found that peptides readily inserted into bacterial lipid mixtures, although no insertion was detected in model "mammalian" membranes.

View Article and Find Full Text PDF

The MICs of cationic, hydrophobic peptides of the prototypic sequence KKAAAXAAAAAXAAWAAXAAAKKKK-amide (where X is one of the 20 commonly occurring amino acids) are in a low micromolar range for a panel of gram-negative and gram-positive bacteria, with no or low hemolytic activity against human and rabbit erythrocytes. The peptides are active only when the average segmental hydrophobicity of the 19-residue core is above an experimentally determined threshold value (where X is Phe, Trp, Leu, Ile, Met, Val, Cys, or Ala). Antimicrobial activity could be increased by using peptides that were truncated from the prototype length to 11 core residues, with X being Phe and with 6 Lys residues grouped at the N terminus.

View Article and Find Full Text PDF