Proc Natl Acad Sci U S A
November 2006
The dissociable sigma subunit of bacterial RNA polymerase is required for the promoter-specific initiation of transcription. When bound to RNA polymerase, sigma makes sequence-specific promoter contacts and plays a crucial role in DNA melting. In isolation, however, sigma lacks significant promoter binding activity.
View Article and Find Full Text PDFThe key regulators of bacterial transcription initiation are the sigma factors, which direct promoter recognition and melting but only after binding to the core RNA polymerase to form the holoenzyme. X-ray crystal structures of the flagellar sigma, sigma(28), in complex with its anti-sigma, FlgM, explain the inhibition mechanism of FlgM, including its ability to attack and destabilize the sigma(28)-holoenzyme. The sigma domains (sigma(2), sigma(3), and sigma(4)) pack together in a compact unit with extensive interdomain interfaces that bury the promoter binding determinants, including the -35 element recognition helix of sigma(4), which fits in an acidic groove on the surface of sigma(3).
View Article and Find Full Text PDF