In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media.
View Article and Find Full Text PDFDespite insights into the molecular pathways regulating hypoxia-induced gene expression, it is not known which cell types accomplish oxygen sensing during neo-vasculogenesis. We have developed a humanized mouse model of endothelial and mesenchymal progenitor co-transplantation to delineate the cellular compartments responsible for hypoxia response during vasculogenesis. Mesenchymal stem/progenitor cells (MSPCs) accumulated nuclear hypoxia-inducible transcription factor (HIF)-1α earlier and more sensitively than endothelial colony forming progenitor cells (ECFCs) in vitro and in vivo.
View Article and Find Full Text PDF