Publications by authors named "Margaret Tome"

Since the approval of brentuximab vedotin (BV), assessment of CD30 status by immunohistochemistry gained increasing importance in the clinical management of patients diagnosed with CD30-expressing lymphomas, including classical Hodgkin lymphoma (CHL). Paradoxically, patients with low or no CD30 expression respond to BV. This discrepancy may be due to lack of standardization in CD30 staining methods.

View Article and Find Full Text PDF

Superoxide dismutases play an important role in human health and disease. Three decades of effort have gone into synthesizing SOD mimics for clinical use. The result is the Mn porphyrins which have SOD-like activity.

View Article and Find Full Text PDF

P-glycoprotein (PgP) is the major drug efflux pump in human cerebral microvessels. PgP prevents pathogens, toxins and therapeutic drugs from entering the CNS. Understanding the molecular regulation of PgP activity will suggest novel mechanisms to improve CNS drug delivery.

View Article and Find Full Text PDF

Cortical spreading depression (CSD) in the CNS is suggested as a common mechanism contributing to headache. Despite strong evidence for CNS involvement in headache disorders, drug development for headache disorders remains focused on peripheral targets. Difficulty in delivering drugs across the blood-brain barrier (BBB) may partially account for this disparity.

View Article and Find Full Text PDF

The rates of opioid prescription and use have continued to increase over the last few decades resulting in a greater number of opioid tolerant patients. Treatment of acute pain from surgery and injury is a clinical challenge for these patients. Several pain management strategies including prescribing increased opioids are used clinically with limited success; all currently available strategies have significant limitations.

View Article and Find Full Text PDF

Aims: We aim here to demonstrate that radiation (RT) enhances tumor sensitization by only those Mn complexes that are redox active and cycle with ascorbate (Asc), thereby producing HO and utilizing it subsequently in protein S-glutathionylation in a glutathione peroxidase (GPx)-like manner. In turn, such compounds affect cellular redox environment, described by glutathione disulfide (GSSG)/glutathione (GSH) ratio, and tumor growth. To achieve our goal, we tested several Mn complexes of different chemical and physical properties in cellular and animal flank models of 4T1 breast cancer cell.

View Article and Find Full Text PDF

Opioids are currently the primary treatment method used to manage both acute and chronic pain. In the past two to three decades, there has been a surge in the use, abuse and misuse of opioids. The mechanism by which opioids relieve pain and induce euphoria is dependent on the drug crossing the blood-brain barrier and accessing the central nervous system.

View Article and Find Full Text PDF

P-glycoprotein (PgP), a drug efflux pump in blood-brain barrier endothelial cells, is a major clinical obstacle for effective central nervous system drug delivery. Identifying PgP regulatory pathways that can be exploited clinically is critical for improving central nervous system drug delivery. We previously found that PgP activity increases in rat brain microvessels concomitant with decreased central nervous system drug delivery in response to acute peripheral inflammatory pain.

View Article and Find Full Text PDF

Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P-glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood-brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity.

View Article and Find Full Text PDF

The manganese porphyrin, manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin (MnTE-2-PyP(5+)), acts as a pro-oxidant in the presence of intracellular H2O2. Mitochondria are the most prominent source of intracellular ROS and important regulators of the intrinsic apoptotic pathway. Due to the increased oxidants near and within the mitochondria, we hypothesized that the mitochondria are a target of the pro-oxidative activity of MnTE-2-PyP(5+) and that we could exploit this effect to enhance the chemotherapeutic response in lymphoma.

View Article and Find Full Text PDF

The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery.

View Article and Find Full Text PDF

Characteristics of cancer cells include a more oxidized redox environment, metabolic reprogramming and apoptosis resistance. Our studies with a lymphoma model have explored connections between the cellular redox environment and cancer cell phenotypes. Alterations seen in lymphoma cells made resistant to oxidative stress include: a more oxidized redox environment despite increased expression of antioxidant enzymes, enhanced net tumour growth, metabolic changes involving the mitochondria and resistance to the mitochondrial pathway to apoptosis.

View Article and Find Full Text PDF

Bcl-2 and other anti-apoptotic proteins are associated with defective caspase-dependent apoptotic pathways, resulting in chemoresistance. We have previously shown that ATN-224, a copper chelator drug, induces cell death in murine thymic lymphoma cells transfected with Bcl-2. In the current study, we tested whether ATN-224 was effective in diffuse large B cell lymphoma (DLBCL) cells, which have increased anti‑apoptotic proteins through translocation or amplification.

View Article and Find Full Text PDF

Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death.

View Article and Find Full Text PDF

Acquired resistance to drugs commonly used for lymphoma treatment poses a significant barrier to improving lymphoma patient survival. Previous work with a lymphoma tissue culture model indicates that selection for resistance to oxidative stress confers resistance to chemotherapy-induced apoptosis. This suggests that adaptation to chronic oxidative stress can contribute to chemoresistance seen in lymphoma patients.

View Article and Find Full Text PDF

Glucocorticoids are a class of steroid hormones commonly used for the treatment of hematological malignancies due to their ability to induce apoptosis in lymphoid cells. An understanding of the critical steps in glucocorticoid-induced apoptosis is required to identify sources of drug resistance. Previously, we found that an increase in hydrogen peroxide is a necessary signal for glucocorticoid-induced apoptosis.

View Article and Find Full Text PDF

Previously, arsenic trioxide showed impressive regression rates of acute promyelocytic leukemia. Here, we investigated molecular determinants of sensitivity and resistance of cell lines of different tumor types towards arsenic trioxide. Arsenic trioxide was the most cytotoxic compound among 8 arsenicals investigated in the NCI cell line panel.

View Article and Find Full Text PDF

Chronic inflammation increases lymphoma risk. Chronic inflammation exposes cells to increased reactive oxygen species (ROS). Constant exposure to ROS selects for oxidative stress-resistant cells with upregulated anti-oxidant defense enzymes.

View Article and Find Full Text PDF

Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP(5+), augments glucocorticoid-induced apoptosis in WEHI7.

View Article and Find Full Text PDF

Glucocorticoid-induced apoptosis is exploited clinically for the treatment of hematologic malignancies. Determining the required molecular events for glucocorticoid-induced apoptosis will identify resistance mechanisms and suggest strategies for overcoming resistance. In this study, we found that glucocorticoid treatment of WEHI7.

View Article and Find Full Text PDF

Background: Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome.

View Article and Find Full Text PDF

Barrett's esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear.

View Article and Find Full Text PDF

Mitochondria are central to a variety of cellular processes, from metabolism to cell death. In this study, we demonstrated that an increase in the critical mitochondrial protein, cytochrome c, correlated with drug resistance in a cell culture model of aggressive lymphoma. Increased cytochrome c expression was also correlated with decreased survival in the aggressive diffuse large B-cell and mantle cell lymphomas, but not in the indolent follicular lymphoma.

View Article and Find Full Text PDF

Glucocorticoid-induced apoptosis is exploited for the treatment of hematologic malignancies. Innate and acquired resistance limits treatment efficacy; however, resistance mechanisms are not well understood. Previously, using WEHI7.

View Article and Find Full Text PDF

Purpose: Green tea consumption has been associated with decreased risk of certain types of cancers in humans. Induction of detoxification enzymes has been suggested as one of the biochemical mechanisms responsible for the cancer-preventive effect of green tea. We conducted this clinical study to determine the effect of repeated green tea polyphenol administration on a major group of detoxification enzymes, glutathione S-transferases (GST).

View Article and Find Full Text PDF