Reassortment of influenza A viruses is known to affect viability, replication efficiency, antigenicity, host range, and virulence, and can generate pandemic strains. In this study, we demonstrated that the specific exchange of the NS gene segment from highly pathogenic A/HK/156/97 (H5N1) [E92 or E92D NS1] virus for the cognate NS gene segment of A/PR/834(H1N1) [D92 NS1] virus did not cause a significant change in the sizes of infectious particle subpopulations. However, it resulted in 2 new phenotypic changes: (1) de novo generation of large subpopulations of defective-interfering particles (DIPs); and (2) enhancement of interferon (IFN)-inducing particle efficiency leading to an order of magnitude or higher quantum (peak) yield of IFN in both avian and mammalian cells.
View Article and Find Full Text PDFTwo effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers.
View Article and Find Full Text PDFThe dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold.
View Article and Find Full Text PDFChicken interferon-alpha administered perorally in drinking water acts on the oropharyngeal mucosal system as an adjuvant that causes chickens to rapidly seroconvert after natural infection by low-pathogenicity Influenza virus. These chickens, termed super sentinels, can serve as sensitive early detectors of clinically inapparent infections.
View Article and Find Full Text PDFClonogenic (single-cell plating) assays were used to define and quantify subpopulations of two genetically closely related variants of influenza virus A/TK/OR/71 that differed primarily in the size of the NS1 gene product; they expressed a full-size (amino acids [aa] 1 to 230) or truncated (aa 1 to 124) NS1 protein. Monolayers of Vero cells were infected with different amounts of virus, monodispersed, and plated. Cell survival curves were generated from the fraction of cells that produced visible colonies as a function of virus multiplicity.
View Article and Find Full Text PDFAvian influenza virus (AIV) A/turkey/Oregon/71-SEPRL (TK/OR/71-SEPRL) (H7N3) encodes a full-length NS1 protein and is a weak inducer of interferon (IFN). A variant, TK/OR/71-delNS1 (H7N3), produces a truncated NS1 protein and is a strong inducer of IFN. These otherwise genetically related variants differ 20-fold in their capacities to induce IFN in primary chicken embryo cells but are similar in their sensitivities to the action of IFN.
View Article and Find Full Text PDFWe have examined the role of dendritic cells (DCs) in the antiviral immune response and viral clearance using a transgenic mouse model (CD11c-diphtheria toxin (DT) receptor GFP) that allows for their conditional ablation in vivo. DT administration systemically ablated conventional and IFN-producing plasmacytoid DCs (pDCs) in transgenic, but not nontransgenic littermates, without elimination of splenic macrophages. Unexpectedly, early (12 and 48 h postinfection) viral clearance of vesicular stomatitis virus was normal in DC-depleted mice despite markedly reduced serum titers of type I IFN.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
February 2006
Chicken embryonic cells (CEC) are nonpermissive hosts for the replication of human adenoviruses, yet they respond to infection by producing interferon (IFN). The nature of the IFN inducer moiety in these viruses has been elusive since its initial study by Ilona Béládi and colleagues some 40 years ago. We tested the hypothesis that viral dsRNA was the IFN inducer molecule--for two reasons: (i) dsRNA has been identified as a potent inducer of IFN, and (ii) developmentally mature CEC cells as cultured in vitro can develop a hyper-responsive state to dsRNA such that a single molecule of dsRNA per cell constitutes the threshold of detection.
View Article and Find Full Text PDFWe report herein that vesicular stomatitis virus (VSV) induced a concurrent primary Th1 (T helper 1) and Th2 cytokine response detectable ex vivo. Liposome-encapsulated clodronate-mediated elimination of CD8- marginal dendritic cells (DCs) and splenic macrophages (m Phi), but not CD8+ interdigitating DCs, prior to infection resulted in a markedly diminished chemokine and Th1 (IL-2, interferon-gamma) cytokine response, although the Th2 response (IL-4) remained relatively intact. Repopulation with marginal DCs and marginal metallophilic macrophages (MMM) restored Th1 cytokine profiles but did not restore chemokine responsiveness or reduce VSV-induced morbidity/mortality.
View Article and Find Full Text PDFDevelopmentally aged chicken embryo cells which hyperproduce interferon (IFN) when induced were used to quantify IFN production and its suppression by eight strains of type A influenza viruses (AIV). Over 90% of the IFN-inducing or IFN induction-suppressing activity of AIV populations resided in noninfectious particles. The IFN-inducer moiety of AIV appears to preexist in, or be generated by, virions termed IFN-inducing particles (IFP) and was detectable under conditions in which a single molecule of double-stranded RNA introduced into a cell via endocytosis induced IFN, whereas single-stranded RNA did not.
View Article and Find Full Text PDF