Recent studies have uncovered a strong effect of host genetic variation on the composition of host-associated microbiota. Here, we present HOMINID, a computational approach based on Lasso linear regression, that given host genetic variation and microbiome taxonomic composition data, identifies host single nucleotide polymorphisms (SNPs) that are correlated with microbial taxa abundances. Using simulated data, we show that HOMINID has accuracy in identifying associated SNPs and performs better compared with existing methods.
View Article and Find Full Text PDF