Extracts and compounds derived from marine organisms have reportedly shown some osteogenic potential. As such, these bioactives may aid in the treatment of musculoskeletal conditions such as osteoporosis; helping to address inefficacies with current treatment options. In this study, 72 fractions were tested for their in vitro osteogenic activity using a human foetal osteoblast (hFOB) cell line and bone marrow derived mesenchymal stem cells (MSCs), focusing on their cytotoxic, proliferative and differentiation effects.
View Article and Find Full Text PDFThrough the current trend for bioprospecting, marine organisms - particularly algae - are becoming increasingly known for their osteogenic potential. Such organisms may provide novel treatment options for osteoporosis and other musculoskeletal conditions, helping to address their large healthcare burden and the limitations of current therapies. In this study, extracts from two red algae - Plocamium lyngbyanum and Ceramium secundatum - were tested in vitro and in vivo for their osteogenic potential.
View Article and Find Full Text PDFAntifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans.
View Article and Find Full Text PDFThe aims of this study were to determine reference ranges for the urinary calcium (UCa/Cr) and phosphate (UPO(4)/Cr) creatinine ratios and to study factors influencing these ratios in a representative population of preterm infants managed according to current nutritional guidelines. Spot urine samples were obtained from 186 preterm infants (gestation 24-34 weeks) for measurement of UCa/Cr and UPO(4)/Cr ratios as part of a routine metabolic bone screening program, once every 2-4 weeks from the 3rd to the 18th week of life. Data were also collected on gender, appropriate or small for gestational age (SGA), nutrition [total parenteral nutrition (TPN), preterm or term formula, and breast milk], plasma Ca, P0(4), urea, and electrolytes and on the use of drugs (frusemide, dexamethasone, and theophylline).
View Article and Find Full Text PDF