Publications by authors named "Margaret R Vos"

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.

View Article and Find Full Text PDF

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases, while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55. While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.

View Article and Find Full Text PDF

It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation.

View Article and Find Full Text PDF

Inquiry based research experiences are thought to increase learning gains in biology, STEM retention, and confidence in students of diverse backgrounds. Furthermore, such research experiences within the first year of college may foster increased student retention and interest in biology. However, providing first year students in biology labs with inquiry-based experiences is challenging given demands of large student enrollments, restricted lab space, and instructor time.

View Article and Find Full Text PDF