Publications by authors named "Margaret R Metz"

Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue-based processes.

View Article and Find Full Text PDF

Flowering and fruiting phenology have been infrequently studied in the ever-wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever-wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the timing of seed fall in tropical plant communities influences species coexistence through niche partitioning and interspecific facilitation.
  • Researchers found significant synchrony in seed fall patterns across various timescales, indicating that environmental factors and species interactions shape community phenology.
  • Wind-dispersed species showed notable synchrony at approximately 6-month intervals, suggesting that these species may evolve similar phenological traits to take advantage of seasonal wind patterns.
View Article and Find Full Text PDF

Epidemiological models are important for the understanding of disease progression in plants and for the design of control strategies. , the pathogen responsible for the disease known as Sudden Oak Death, causes lethal infection on several oaks but relies on California bay laurels for transmission. Here, repeated surveys of bay laurels and oaks indicated that bay laurel disease incidence was positively correlated with rainfall, bay laurel density, and an eastern aspect, and negatively correlated with bay laurel basal area.

View Article and Find Full Text PDF

The global mechanisms that regulate and potentially coordinate cell proliferation & death in developing neural regions are not well understood. In particular, it is not clear how or whether clonal relationships between neural progenitor cells and their progeny influence the growing brain. We have developed an approach using Brainbow in the developing zebrafish to visualize and follow multiple clones of related cells in vivo over time.

View Article and Find Full Text PDF

Human-altered ecological disturbances may challenge system resilience and disrupt biological legacies maintaining ecosystem recovery. Yet, the extent to which novel regimes challenge these legacies varies. This may be partially explained by differences in the vulnerability of life history strategies to disturbance characteristics.

View Article and Find Full Text PDF

The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal.

View Article and Find Full Text PDF

An under-examined component of global change is the alteration of disturbance regimes due to warming climates, continued species invasions, and accelerated land-use change. These drivers of global change are themselves novel ecosystem disturbances that may interact with historically occurring disturbances in complex ways. Here we use the natural experiment presented by wildfires in redwood forests impacted by an emerging infectious disease to demonstrate unexpected synergies of novel disturbance interactions.

View Article and Find Full Text PDF

Herbivores are often implicated in the generation of the extraordinarily diverse tropical flora. One hypothesis linking enemies to plant diversification posits that the evolution of novel defenses allows plants to escape their enemies and expand their ranges. When range expansion involves entering a new habitat type, this could accelerate defense evolution if habitats contain different assemblages of herbivores and/or divergent resource availabilities that affect plant defense allocation.

View Article and Find Full Text PDF

Background: Many tropical forest tree species delay greening their leaves until full expansion. This strategy is thought to provide newly flushing leaves with protection against damage by herbivores by keeping young leaves devoid of nutritive value. Because young leaves suffer the greatest predation from invertebrate herbivores, delayed greening could prevent costly tissue loss.

View Article and Find Full Text PDF

The first wildfires in sudden oak death-impacted forests occurred in 2008 in the Big Sur region of California, creating the rare opportunity to study the interaction between an invasive forest pathogen and a historically recurring disturbance. To determine whether and how the sudden oak death pathogen, Phytophthora ramorum, survived the wildfires, we completed intensive vegetation-based surveys in forest plots that were known to be infested before the wildfires. We then used 24 plot-based variables as predictors of P.

View Article and Find Full Text PDF

Background: Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure.

View Article and Find Full Text PDF

Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined prefire fuels from host species in a forest monitoring plot network in Big Sur, California (USA), to understand the interactions between disease-caused mortality and wildfire severity during the 2008 Basin Complex wildfire.

View Article and Find Full Text PDF

Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest.

View Article and Find Full Text PDF

Wood density is thought to be an important indicator of plant life history because it is coupled to many aspects of whole-plant form and function. We used a hierarchical Bayesian approach to explain variation in mortality rates with wood density, drawing on data for 765,500 trees from 1639 species at 10 sites located across the Old and New World tropics. Mortality rates declined with increasing wood density at five of 10 sites.

View Article and Find Full Text PDF