Objectives: Breast cancer remains a prevalent disease in women worldwide. Though advancements in breast cancer care have improved patient survival, a breast cancer diagnosis, and subsequent interventions have a lasting impact on patients' lived experiences during the pandemic.
Methods: We present the collaborative learning process from this patient engagement workshop series as a community-academic partnership.
Co-creation within higher education emphasizes learner empowerment to promote collaboration between the students and staff, enabling students to become active participants in their learning process and the construction of resources with academic staff. Concurrently, a diminishing number of higher education institutions offer in vivo practical classes, resulting in an in vivo skills shortage. To address this, and to actively engage students in their own learning, we describe the co-creation of a student-led drug trial using Lumbriculus variegatus.
View Article and Find Full Text PDFThe translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention.
View Article and Find Full Text PDFBackground: Gastrointestinal smooth muscle relaxation is accomplished by activation of P2Y receptors, therefore this receptor plays an important role in regulation of gut motility. Recently, BPTU was developed as a negative allosteric modulator of the P2Y receptor. Accordingly, the aim of this study was to assess the effect of BPTU on purinergic neurotransmission in pig and human gastrointestinal tissues.
View Article and Find Full Text PDFTyrosine kinase inhibitors (TKIs) have dramatically improved cancer treatment but are known to cause cardiotoxicity. The pathophysiological consequences of TKI therapy are likely to manifest across different cell types of the heart, yet there is little understanding of the differential adverse cellular effects. Cardiac fibroblasts (CFs) play a pivotal role in the repair and remodeling of the heart following insult or injury, yet their involvement in anti-cancer drug induced cardiotoxicity has been largely overlooked.
View Article and Find Full Text PDFProtease-activated receptor-2 (PAR2) has been extensively studied since its discovery in the mid-1990. Despite the advances in understanding PAR2 pharmacology, it has taken almost 25 years for the first inhibitor to reach clinical trials, and so far, no PAR2 antagonist has been approved for human use. Research has employed classical approaches to develop a wide array of PAR2 agonists and antagonists, consisting of peptides, peptoids and antibodies to name a few, with a surge in patent applications over this period.
View Article and Find Full Text PDFCalcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) acts as a molecular switch regulating cardiovascular Ca handling and contractility in health and disease. Activation of CaMKIIδ is also known to regulate cardiovascular inflammation and is reported to be required for pro-inflammatory NF-κB signalling. In this study the aim was to characterise how CaMKIIδ interacts with and modulates NF-κB signalling and whether this interaction exists in non-contractile cells of the heart.
View Article and Find Full Text PDFAs a target, the JNK pathway has been implicated in roles including cell death, proliferation, and inflammation in variety of contexts which span cardiovascular disease, neurodegenerative pathologies, and cancer. JNK1 and JNK2 have recently been demonstrated to function independently, highlighting a new parameter in the study of the JNK pathway. In order for JNK1 and JNK2-specific roles to be defined, better tools need to be employed.
View Article and Find Full Text PDFGenetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function.
View Article and Find Full Text PDFObjective: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms.
Approach And Results: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure.
Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However, recent evidence reveals that alternative routes of activation also occur, that PARs signal via multiple pathways and that pathway activation is activator- dependent. Given our increased understanding of PAR function both under physiological and pathophysiological conditions, one aspect that has remained constant is the link between PAR2 and inflammation.
View Article and Find Full Text PDFThe clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype.
View Article and Find Full Text PDFA small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.
View Article and Find Full Text PDFP2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic.
View Article and Find Full Text PDFPlatelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling.
View Article and Find Full Text PDFProteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown.
View Article and Find Full Text PDFMAP kinase phosphatase-2 (MKP-2) is a member of the family of dual specificity phosphatases that functions to inactivate the ERK and JNK MAP kinase signalling pathways. Here, we identify a novel human MKP-2 variant (MKP-2-S) lacking the MAP kinase binding site but retaining the phosphatase catalytic domain. Endogenous MKP-2-S transcripts and proteins were found in PC3 prostate and MDA-MB-231 breast cancer cells and also human prostate biopsies.
View Article and Find Full Text PDFIn this study we examined the potential for PAR(2) and TNFalpha to synergise at the level of MAP kinase signalling in PAR(2) expressing NCTC2544 cells. However, to our surprise we found that activation of PAR(2) by trypsin or the specific activating peptide SLIGKV-OH strongly inhibited both the phosphorylation and activity of JNK. In contrast neither p38 MAP kinase nor ERK activation was affected although TNFalpha stimulated IkappaBalpha loss was partially reversed.
View Article and Find Full Text PDFThe mechanisms underpinning the coupling of GPCRs, such as PAR-2, to the phosphorylation of p65 NFkappaB have not been investigated. In the current study we found that trypsin and the selective PAR-2 activating peptide, 2f-LIGKV-OH, stimulated large and sustained increases in the serine 536 phosphorylation of p65/RelA in a transfected skin epithelial cell line and primary keratinocytes. Parallel experiments showed that in both cell types, p65 NFkappaB phosphorylation is mediated through the selective activation of IKK2.
View Article and Find Full Text PDF