"Regulatory Bioinformatics" strives to develop and implement a standardized and transparent bioinformatic framework to support the implementation of existing and emerging technologies in regulatory decision-making. It has great potential to improve public health through the development and use of clinically important medical products and tools to manage the safety of the food supply. However, the application of regulatory bioinformatics also poses new challenges and requires new knowledge and skill sets.
View Article and Find Full Text PDFDuring genetic engineering, DNA is inserted into a plant's genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices.
View Article and Find Full Text PDFMitochondria and peroxisomes share a number of common biochemical processes, including the beta oxidation of fatty acids and the scavenging of peroxides. Here, we identify a new outer-membrane mitochondria-anchored protein ligase (MAPL) containing a really interesting new gene (RING)-finger domain. Overexpression of MAPL leads to mitochondrial fragmentation, indicating a regulatory function controlling mitochondrial morphology.
View Article and Find Full Text PDFOf the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons.
View Article and Find Full Text PDFThe mitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear.
View Article and Find Full Text PDFPioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events.
View Article and Find Full Text PDFMitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase.
View Article and Find Full Text PDF