Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates.
View Article and Find Full Text PDFNeuropeptides, including oxytocin-like peptides, are a conserved group of hormones that regulate a wide range of social behaviors, including vocal communication. In the current study, we evaluate whether putative brain sites for the actions of isotocin (IT), the oxytocin (OT) homolog of teleost fishes are associated with vocal courtship and circuitry in the plainfin midshipman fish (Porichthys notatus). During the breeding season, nesting males produce advertisement calls known as "hums" to acoustically court females at night and attract them to nests.
View Article and Find Full Text PDFMotivated by studies of speech deficits in humans, several studies over the past two decades have investigated the potential role of a forkhead domain transcription factor, FoxP2, in the central control of acoustic signaling/vocalization among vertebrates. Comparative neuroanatomical studies that mainly include mammalian and avian species have mapped the distribution of FoxP2 expression in multiple brain regions that imply a greater functional significance beyond vocalization that might be shared broadly across vertebrate lineages. To date, reports for teleost fish have been limited in number and scope to nonvocal species.
View Article and Find Full Text PDFToadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'.
View Article and Find Full Text PDFBehavioral and neuroendocrine mechanisms of social vocalization in teleost fish are influenced by the glucocorticoid cortisol and the androgen 11-ketotestosterone (11kT). The relative abundance of both 11kT, which binds to androgen receptors (ARα, ARβ), and cortisol, which binds to glucocorticoid receptors (GR-1, GR-2), is regulated by 11β-hydroxylase (11βH) that converts 11-deoxycortisol to cortisol and testosterone to 11β-OH-testosterone, and 11β-hydroxysteroid dehydrogenase (11βHSD) that converts cortisol to the inactive metabolite cortisone and 11β-OH-testosterone to 11kT. In midshipman fish, we tested the hypothesis that plasma steroid levels, mRNA abundance for 11βH and 11βHSD in the vocal muscle and testis (known site of 11kT synthesis), and mRNA abundances for ARs and GRs in vocal muscle, would differ between males that did or did not recently produce 'hum' advertisement calls.
View Article and Find Full Text PDFAcross all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus).
View Article and Find Full Text PDF