Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species.
View Article and Find Full Text PDFIt has been suggested that caricaturing enhances esthetic appeal, by making an image more strongly stimulate those areas of the brain encoding the subject's distinctive features than does the subject itself. However, some experimental work suggests that people prefer faces with proportions closer to average, or closer to a particular template. It might be that familiarity with the face is important if caricaturing is to increase the esthetic appeal of a likeness.
View Article and Find Full Text PDFHumans perceive illusory faces in everyday objects with a face-like configuration, an illusion known as face pareidolia. Face-selective regions in humans and monkeys, believed to underlie face perception, have been shown to respond to face pareidolia images. Here, we investigated whether pareidolia selectivity in macaque inferotemporal cortex is explained by the face-like configuration that drives the human perception of illusory faces.
View Article and Find Full Text PDFAn interconnected group of cortical regions distributed across the primate inferotemporal cortex forms a network critical for face perception. Understanding the microarchitecture of this face network can refine mechanistic accounts of how individual areas function and interact to support visual perception. To address this, we acquire a unique dataset in macaque monkeys combining fMRI to localize face patches in vivo and then ex vivo histology to resolve their histo-architecture across cortical depths in the same individuals.
View Article and Find Full Text PDFIn natural vision, primates actively move their eyes several times per second via saccades. It remains unclear whether, during this active looking, visual neurons exhibit classical retinotopic properties, anticipate gaze shifts or mirror the stable quality of perception, especially in complex natural scenes. Here, we let 13 monkeys freely view thousands of natural images across 4.
View Article and Find Full Text PDFIt is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience.
View Article and Find Full Text PDFHumans are inclined to perceive faces in everyday objects with a face-like configuration. This illusion, known as face pareidolia, is often attributed to a specialized network of 'face cells' in primates. We found that face cells in macaque inferotemporal cortex responded selectively to pareidolia images, but this selectivity did not require a holistic, face-like configuration, nor did it encode human faceness ratings.
View Article and Find Full Text PDFFace cells are neurons that respond more to faces than to non-face objects. They are found in clusters in the inferotemporal cortex, thought to process faces specifically, and, hence, studied using faces almost exclusively. Analyzing neural responses in and around macaque face patches to hundreds of objects, we found graded response profiles for non-face objects that predicted the degree of face selectivity and provided information on face-cell tuning beyond that from actual faces.
View Article and Find Full Text PDFPrimates constantly explore their surroundings via saccadic eye movements that bring different parts of an image into high resolution. In addition to exploring new regions in the visual field, primates also make frequent return fixations, revisiting previously foveated locations. We systematically studied a total of 44,328 return fixations out of 217,440 fixations.
View Article and Find Full Text PDFPrevious studies showed that baby monkeys separated from their mothers develop strong and lasting attachments to inanimate surrogate mothers, but only if the surrogate has a soft texture; soft texture is more important for the infant's attachment than is the provision of milk. Here I report that postpartum female monkeys also form strong and persistent attachments to inanimate surrogate infants, that the template for triggering maternal attachment is also tactile, and that even a brief period of attachment formation can dominate visual and auditory cues indicating a more appropriate target.
View Article and Find Full Text PDFThe primate inferior temporal cortex contains neurons that respond more strongly to faces than to other objects. Termed “face neurons,” these neurons are thought to be selective for faces as a semantic category. However, face neurons also partly respond to clocks, fruits, and single eyes, raising the question of whether face neurons are better described as selective for visual features related to faces but dissociable from them.
View Article and Find Full Text PDFPrimate cerebral cortex is highly convoluted with much of the cortical surface buried in sulcal folds. The origins of cortical folding and its functional relevance have been a major focus of systems and cognitive neuroscience, especially when considering stereotyped patterns of cortical folding that are shared across individuals within a primate species and across multiple species. However, foundational questions regarding organizing principles shared across species remain unanswered.
View Article and Find Full Text PDFContemp Clin Trials Commun
December 2021
Gastric bypass surgery leads to significant and sustained weight loss and a reduction in associated health risks in individuals with severe obesity. While reduced energy intake (EI) is the primary driver of weight loss following surgery, the underlying mechanisms accounting for this energy deficit are not well understood. The evidence base has been constrained by a lack of fit-for-purpose methodology in assessing food intake coupled with follow-up studies that are relatively short-term.
View Article and Find Full Text PDFNat Rev Neurosci
September 2021
How does the brain encode information about the environment? Decades of research have led to the pervasive notion that the object-processing pathway in primate cortex consists of multiple areas that are each specialized to process different object categories (such as faces, bodies, hands, non-face objects and scenes). The anatomical consistency and modularity of these regions have been interpreted as evidence that these regions are innately specialized. Here, we propose that ventral-stream modules do not represent clusters of circuits that each evolved to process some specific object category particularly important for survival, but instead reflect the effects of experience on a domain-general architecture that evolved to be able to adapt, within a lifetime, to its particular environment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Primate brains typically have regions within the ventral visual stream that are selectively responsive to faces. In macaques, these face patches are located in similar parts of inferotemporal cortex across individuals although correspondence with particular anatomical features has not been reported previously. Here, using high-resolution functional and anatomical imaging, we show that small "bumps," or buried gyri, along the lower bank of the superior temporal sulcus are predictive of the location of face-selective regions.
View Article and Find Full Text PDFThe evolution and development of anatomical-functional relationships in the cerebral cortex is of major interest in neuroscience. Here, we leveraged the fact that a functional region selective for visual scenes is located within a sulcus in the medial ventral temporal cortex (VTC) in both humans and macaques to examine the relationship between sulcal depth and place selectivity in the medial VTC across species and age groups. To do so, we acquired anatomical and functional magnetic resonance imaging scans in 9 macaques, 26 human children, and 28 human adults.
View Article and Find Full Text PDFDespite evidence that context promotes the visual recognition of objects, decades of research have led to the pervasive notion that the object processing pathway in primate cortex consists of multiple areas that each process the intrinsic features of a few particular categories (e.g. faces, bodies, hands, objects, and scenes).
View Article and Find Full Text PDFTopographic sensory maps are a prominent feature of the adult primate brain. Here, we asked whether topographic representations of the body are present at birth. Using functional MRI (fMRI), we find that the newborn somatomotor system, spanning frontoparietal cortex and subcortex, comprises multiple topographic representations of the body.
View Article and Find Full Text PDFFocused ultrasound (FUS)-induced disruption of the blood-brain barrier (BBB) is a non-invasive method to target drug delivery to specific brain areas that is now entering into the clinic. Recent studies have shown that the method has several secondary effects on local physiology and brain function beyond making the vasculature permeable to normally non-BBB penetrant molecules. This study uses functional MRI methods to investigate how FUS BBB opening alters the neurovascular response in the rat brain.
View Article and Find Full Text PDFOur assignment was to review the development of the face-processing network, an assignment that carries the presupposition that a face-specific developmental program exists. We hope to cast some doubt on this assumption and instead argue that the development of face processing is guided by the same ubiquitous rules that guide the development of cortex in general.
View Article and Find Full Text PDFWhat specific features should visual neurons encode, given the infinity of real-world images and the limited number of neurons available to represent them? We investigated neuronal selectivity in monkey inferotemporal cortex via the vast hypothesis space of a generative deep neural network, avoiding assumptions about features or semantic categories. A genetic algorithm searched this space for stimuli that maximized neuronal firing. This led to the evolution of rich synthetic images of objects with complex combinations of shapes, colors, and textures, sometimes resembling animals or familiar people, other times revealing novel patterns that did not map to any clear semantic category.
View Article and Find Full Text PDFThe technology of transcranial focused ultrasound (FUS) enables a novel approach to neuromodulation, a tool for selective manipulation of brain function to be used in neurobiology research and with potential applications in clinical treatment. The method uses transcranial focused ultrasound to non-invasively open the blood-brain barrier (BBB) in a localized region such that a systemically injected neurotransmitter chemical can be delivered to the targeted brain site. The approach modulates the chemical signaling that occurs in and between neurons, making it complimentary to most other neuromodulation techniques that affect the electrical properties of neuronal activity.
View Article and Find Full Text PDFFocused ultrasound (FUS) is a technology capable of delivering therapeutic levels of energy through the intact skull to a tightly localized brain region. Combining the FUS pressure wave with intravenously injected microbubbles creates forces on blood vessel walls that open the blood-brain barrier (BBB). This noninvasive and localized opening of the BBB allows for targeted delivery of pharmacological agents into the brain for use in therapeutic development.
View Article and Find Full Text PDF