Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC.
View Article and Find Full Text PDFFlattened carbon nanotubes (flCNTs) naturally form in many carbon nanotube-based materials and can exhibit mechanical properties similar to round carbon nanotubes but with tighter packing and alignment. To facilitate the design, fabrication, and testing of flCNT-based composites for aerospace structures, computational modeling can be used to efficiently and accurately predict their performance as a function of processing parameters, such as reinforcement/matrix cross-linking. In this study, molecular dynamics modeling is used to predict the load transfer characteristics of the interface region between the flat region of flCNTs (i.
View Article and Find Full Text PDF