Attaining high oxidation states at the metal center of transition metal complexes is a key design principle for many catalytic processes. One way to support high oxidation state chemistry is to utilize ligands that are electron-donating in nature. Understanding the structural and electronic changes of metal complexes as higher oxidation states are reached is critical towards designing more robust catalysts that are able to turn over at high rates without decomposing.
View Article and Find Full Text PDFThe ultraviolet-visible (UV-vis) spectroelectrochemical measurements of heme proteins in the presence of a heme-bound fluoride ion can be used as a probe for heme-linked ionizations of acid-base groups in the heme pocket. A detailed study of the pH dependence of the midpoint potential of skeletal horse myoglobin (Mb) with a heme-bound fluoride ion (Mb-F) reveals how protonation of the distal histidine (H64) changes the redox properties of the protein with a determined pKa of 5.3.
View Article and Find Full Text PDF