Graft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown. We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using viability stains.
View Article and Find Full Text PDFGraft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown.We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using trypan blue and TUNEL assays.
View Article and Find Full Text PDFHybrid breeding for increased vigour has been used for over a century to boost agricultural outputs without requiring higher inputs. While this approach has led to some of the most substantial gains in crop productivity, breeding barriers have fundamentally limited soybean (Glycine max) from reaping the benefits of hybrid vigour. Soybean flowers self-pollinate prior to opening and thus are not readily amenable to outcrossing.
View Article and Find Full Text PDFInterspecies grafting is an economically relevant technique that allows beneficial shoot and root combinations from separate species to be combined. One hypothesis for the basis of graft compatibility revolves around taxonomic relatedness. To test how phylogenetic distance affects interspecific graft compatibility within the economically important Solanaceae subfamily, Solanoideae, we characterized the anatomical and biophysical integrity of graft junctions between four species: tomato (Solanum lycopersicum), eggplant (Solanum melongena), pepper (Capsicum annuum), and groundcherry (Physalis pubescens).
View Article and Find Full Text PDFOrganismal communication entails encoding a message that is sent over space or time to a recipient cell, where that message is decoded to activate a downstream response. Defining what qualifies as a functional signal is essential for understanding intercellular communication. In this review, we delve into what is known and unknown in the field of long-distance messenger RNA (mRNA) movement and draw inspiration from the field of information theory to provide a perspective on what defines a functional signaling molecule.
View Article and Find Full Text PDFEuphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E.
View Article and Find Full Text PDFColor patterning contributes to important plant traits that influence ecological interactions, horticultural breeding, and agricultural performance. High-throughput phenotyping of color is valuable for understanding plant biology and selecting for traits related to color during plant breeding. Here we present ColourQuant, an automated high-throughput pipeline that allows users to extract color phenotypes from images.
View Article and Find Full Text PDFThe Plant Cell Atlas (PCA) community hosted a virtual symposium on December 9 and 10, 2021 on single cell and spatial omics technologies. The conference gathered almost 500 academic, industry, and government leaders to identify the needs and directions of the PCA community and to explore how establishing a data synthesis center would address these needs and accelerate progress. This report details the presentations and discussions focused on the possibility of a data synthesis center for a PCA and the expected impacts of such a center on advancing science and technology globally.
View Article and Find Full Text PDFThe Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data.
View Article and Find Full Text PDFColeus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework.
View Article and Find Full Text PDFGrafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production.
View Article and Find Full Text PDFLatex-containing cells called laticifers are present in at least 41 flowering plant families and are thought to have convergently evolved at least 12 times. These cells are known to function in defense, but little is known about the molecular genetic mechanisms of their development. The expansion of laticifers into their distinctive tube shape can occur through two distinct mechanisms, cell fusion and intrusive growth.
View Article and Find Full Text PDFPremise: As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves.
View Article and Find Full Text PDFGrafting is an ancient technique that involves the physical joining of genotypically distinct shoot and root systems, in order to achieve a desirable compound plant. This practice is widely used in modern agriculture to improve biotic and abiotic stress tolerance, modify plant architecture, induce precocious flowering and rejuvenate old perennial varieties, boost yield, and more. Beneficial new rootstock-scion combinations are currently identified through an inefficient trial and error process, which presents a significant bottleneck for the application of grafting to combat new environmental challenges.
View Article and Find Full Text PDFPremise: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines ( spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves.
View Article and Find Full Text PDFThe rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface.
View Article and Find Full Text PDFVascular plants are wired with a remarkable long-distance communication system. This network can span from as little as a few centimeters (or less) in species like Arabidopsis, up to 100 m in the tallest giant sequoia, linking distant organ systems into a unified, multicellular organism. Grafting is a fundamental technique that allows researchers to physically break apart and reassemble the long-distance transport system, enabling the discovery of molecular signals that underlie intraorganismal communication.
View Article and Find Full Text PDFThe Women, ART and the Criminalization of HIV Study is a qualitative, arts-based research study focusing on the impact of the HIV non-disclosure law on women living with HIV in Canada. The federal law requires people living with HIV to disclose their HIV-positive status to sexual partners before engaging in sexual activities that pose what the Supreme Court of Canada called a 'realistic possibility of transmission'. Drawing on findings from seven education and discussion sessions with 48 women living with HIV regarding HIV non-disclosure laws in Canada, this paper highlights the ways in which women living with HIV respond to learning about the criminalisation of HIV non-disclosure.
View Article and Find Full Text PDFCurrent morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape.
View Article and Find Full Text PDFEfforts to understand the genetic and environmental conditioning of plant morphology are hindered by the lack of flexible and effective tools for quantifying morphology. Here, we demonstrate that persistent-homology-based topological methods can improve measurement of variation in leaf shape, serrations, and root architecture. We apply these methods to 2D images of leaves and root systems in field-grown plants of a domesticated introgression line population of tomato ().
View Article and Find Full Text PDFThe long-distance transport of sugars and nutrients through the phloem is essential for the proper function and growth of vascular plants. However, in addition to essential nutrients and sugars, phloem sap also contains small molecules (e.g.
View Article and Find Full Text PDFThicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato and identified quantitative trait loci.
View Article and Find Full Text PDF