Maldevelopment of the pharyngeal endoderm, an embryonic tissue critical for patterning of the pharyngeal region and ensuing organogenesis, ultimately contributes to several classes of human developmental syndromes and disorders. Such syndromes are characterized by a spectrum of phenotypes that currently cannot be fully explained by known mutations or genetic variants due to gaps in characterization of critical drivers of normal and dysfunctional development. Despite the disease-relevance of pharyngeal endoderm, we still lack a comprehensive and integrative view of the molecular basis and gene regulatory networks driving pharyngeal endoderm development.
View Article and Find Full Text PDFThe pharyngeal apparatus, a transient embryological structure, includes diverse cells from all three germ layers that ultimately contribute to a variety of adult tissues. In particular, pharyngeal endoderm produces cells of the inner ear, palatine tonsils, the thymus, parathyroid and thyroid glands, and ultimobranchial bodies. Each of these structures and organs contribute to vital human physiological processes, including central immune tolerance (thymus) and metabolic homeostasis (parathyroid and thyroid glands, and ultimobranchial bodies).
View Article and Find Full Text PDFMicrotubule plus-end directed trafficking is dominated by kinesin motors, yet kinesins differ in terms of cargo identity, movement rate, and distance travelled. Functional diversity of kinesins is especially apparent in polarized neurons, where long distance trafficking is required for efficient signal transduction-behavioral response paradigms. The Kinesin-3 superfamily are expressed in neurons and are hypothesized to have significant roles in neuronal signal transduction due to their high processivity.
View Article and Find Full Text PDFThymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes.
View Article and Find Full Text PDFBackground: The obesity pandemic is associated with multiple major health concerns. In addition to diet and lifestyle, there is increasing evidence that environmental exposures to chemicals known as obesogens also may promote obesity.
Objectives: We investigated the massive environmental contamination resulting from the Deepwater Horizon (DWH) oil spill, including the use of the oil dispersant COREXIT in remediation efforts, to determine whether obesogens were released into the environment during this incident.