Publications by authors named "Margaret D Reid"

The violation of a Leggett-Garg inequality confirms the incompatibility between quantum mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because MR fails for systems in a superposition of macroscopically distinct states-or else, that NIM fails. In this paper, we consider a strong negation of macro-realism, involving superpositions of coherent states, where the NIM premise is replaced by Bell's locality premise.

View Article and Find Full Text PDF

The quantum three-box paradox considers a ball prepared in a superposition of being in any one of three boxes. Bob makes measurements by opening either box 1 or box 2. After performing some unitary operations (shuffling), Alice can infer with certainty that the ball was detected by Bob, regardless of which box he opened, if she detects the ball after opening box 3.

View Article and Find Full Text PDF

We compare different approaches to quantum ontology. In particular, we discuss an interpretation of quantum mechanics that we call objective quantum field theory (OQFT), which involves retrocausal fields. Here, objective implies the existence of fields independent of an observer, but not that the results of conjugate measurements are predetermined: the theory is contextual.

View Article and Find Full Text PDF

The truncated Wigner and positive-P phase-space representations are used to study the dynamics of a one-dimensional Bose gas. This allows calculations of the breathing quantum dynamics of higher-order solitons with 10^{3}-10^{5} particles, as in realistic Bose-Einstein condensation experiments. Although classically stable, these decay quantum mechanically.

View Article and Find Full Text PDF

Applications of quantum technology often require fidelities to quantify performance. These provide a fundamental yardstick for the comparison of two quantum states. While this is straightforward in the case of pure states, it is much more subtle for the more general case of mixed quantum states often found in practice.

View Article and Find Full Text PDF

We analyze the effect of decoherence and noise on quantum Fourier transform interferometry, in which a boson sampling photonic network is used to measure optical phase gradients. This novel type of metrology is shown to be robust against phase decoherence. One can also measure gradients using lower-order correlations without substantial degradation.

View Article and Find Full Text PDF

We investigate the resources needed for secure teleportation of coherent states. We extend continuous variable teleportation to include quantum teleamplification protocols that allow nonunity classical gains and a preamplification or postattenuation of the coherent state. We show that, for arbitrary Gaussian protocols and a significant class of Gaussian resources, two-way steering is required to achieve a teleportation fidelity beyond the no-cloning threshold.

View Article and Find Full Text PDF