Members of the order Mucorales are emerging invasive molds that cause infections in immunocompromised patients. However, little is known about the relation between different species of Mucorales and their virulence in invasive pulmonary mucormycosis. Based upon our earlier epidemiological studies, we hypothesized that Cunninghamella bertholletiae would demonstrate increased virulence.
View Article and Find Full Text PDFDiagnosis of invasive pulmonary aspergillosis (IPA) remains a major challenge to clinical microbiology laboratories. We developed rapid and sensitive quantitative PCR (qPCR) assays for genus- and species-specific identification of Aspergillus infections by use of TaqMan technology. In order to validate these assays and understand their potential diagnostic utility, we then performed a blinded study of bronchoalveolar lavage (BAL) fluid specimens from well-characterized models of IPA with the four medically important species.
View Article and Find Full Text PDFAmphotericin B (AMB) is used to treat fungal infections of the central nervous system (CNS). However, AMB shows poor penetration into the CNS and little is known about the factors affecting its permeation through the blood-brain barrier (BBB). Therefore, we studied immunomodulatory and organism-associated molecules affecting the permeability of an in vitro BBB model to AMB.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2009
We studied the antifungal activity of anidulafungin (AFG) in combination with voriconazole (VRC) against experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits and further explored the in vitro and in vivo correlations by using Bliss independence drug interaction analysis. Treatment groups consisted of those receiving AFG at 5 (AFG5 group) and 10 (AFG10 group) mg/kg of body weight/day, VRC at 10 mg/kg every 8 h (VRC group), AFG5 plus VRC (AFG5+VRC group), and AFG10 plus VRC (AFG10+VRC group) and untreated controls. Survival throughout the study was 60% for the AFG5+VRC group, 50% for the VRC group, 27% for the AFG10+VRC group, 22% for the AFG5 group, 18% for the AFG10 group, and 0% for control rabbits (P < 0.
View Article and Find Full Text PDFPulmonary infiltrates in neutropenic hosts with invasive aspergillosis are caused by organism-mediated tissue injury, vascular invasion, and hemorrhagic infarction. Ultrafast computed tomography (UFCT) scanning reproducibly measures these lesions in experimental invasive pulmonary aspergillosis in persistently neutropenic rabbits. The pulmonary lesion score from UFCT scanning is a useful outcome variable for measuring differences in efficacy of antifungal compounds alone and in combination, as well as the virulence of different strains and species of Aspergillus.
View Article and Find Full Text PDFJ Clin Microbiol
November 2008
We developed two real-time quantitative PCR (qPCR) assays, targeting the 28S rRNA gene, for the diagnosis of zygomycosis caused by the most common, clinically significant Zygomycetes. The amplicons of the first qPCR assay (qPCR-1) from Rhizopus, Mucor, and Rhizomucor species were distinguished through melt curve analysis. The second qPCR assay (qPCR-2) detected Cunninghamella species using a different primer/probe set.
View Article and Find Full Text PDFThe treatment, diagnosis and therapeutic monitoring of hematogenous Candida meningoencephalitis (HCME) are not well understood. We therefore studied the expression of (1-->3)-beta-D-glucan (beta-glucan) in cerebrospinal fluid (CSF) and plasma in a nonneutropenic rabbit model of experimental HCME treated with micafungin and amphotericin B. Groups studied consisted of micafungin (0.
View Article and Find Full Text PDFBackground: Hematogenous Candida meningoencephalitis (HCME) is a relatively frequent manifestation of disseminated candidiasis in neonates and is associated with significant mortality and neurodevelopmental abnormalities. The outcome after antifungal therapy is often suboptimal, with few therapeutic options. Limited clinical data suggest that echinocandins may have role to play in the treatment of HCME.
View Article and Find Full Text PDFJ Infect Dis
February 2007
Background: Little is known about the pathogenesis of invasive pulmonary aspergillosis and the relationship between the kinetics of diagnostic markers and the outcome of antifungal therapy.
Methods: An in vitro model of the human alveolus, consisting of a bilayer of human alveolar epithelial and endothelial cells, was developed. An Aspergillus fumigatus strain expressing green fluorescent protein was used.