Publications by authors named "Margaret Buckingham"

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior.

View Article and Find Full Text PDF

I joined François Gros' laboratory as a postdoc at the end of 1971 and continued working with him as a research scientist until 1987, when I became an independent group leader at the Institut Pasteur. In the early 1970s, it was the beginning of research in his lab on muscle cell differentiation, as a model eukaryotic system for studying mRNAs and gene regulation. In this article, I recount our work on myogenesis and mention the other research themes in his lab and the people concerned.

View Article and Find Full Text PDF

PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. -mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate.

View Article and Find Full Text PDF

Muscle satellite cells (MuSCs) are the quiescent muscle stem cells required for adult skeletal muscle repair. The impact of environmental stress such as pollution on MuSC behavior remains unexplored. We evaluated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure, a ubiquitous and highly toxic pollutant, on MuSCs by combining in vivo mouse molecular genetic models with ex vivo studies.

View Article and Find Full Text PDF

The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart.

View Article and Find Full Text PDF

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 () plays a predominant role.

View Article and Find Full Text PDF

In this essay I trace my own research experience as a developmental biologist, from the study of cell differentiation in vitro to tissue formation and regeneration in vivo. Beginning with a thesis on histone modifications, I went on to study gene regulation during myogenesis, first in muscle cells in culture and then in the mouse embryo. Later, we also worked on muscle regeneration in the adult.

View Article and Find Full Text PDF

To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.

View Article and Find Full Text PDF

Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2.

View Article and Find Full Text PDF

Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at -57/-58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles.

View Article and Find Full Text PDF

Adult tissue homeostasis and regeneration rely on tissue stem cell populations that generate committed precursors and differentiated cells while maintaining a pool of stem cells. In adult skeletal muscle, such cells, called satellite cells, remain quiescent at the periphery of muscle fibers. Upon injury they undergo activation, proliferation and differentiation to replace damaged fibers and also self-renew to reconstitute the muscle stem cell pool.

View Article and Find Full Text PDF

Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle.

View Article and Find Full Text PDF
Article Synopsis
  • Neck muscles act as a bridge between trunk/limb muscles from somites and head muscles from cranial mesoderm, with various origins for different neck muscles.
  • Genetic studies indicate that nonsomitic neck muscles are linked to gene regulatory networks found in cardiac progenitor cells, revealing a developmental connection between these muscle types.
  • Findings emphasize the significance of cardiopharyngeal mesoderm in the evolution of vertebrate anatomy and its role in congenital health issues.
View Article and Find Full Text PDF

In this review, we focus on two important steps in the formation of the embryonic heart: (i) the progressive addition of late differentiating progenitor cells from the second heart field that drives heart tube extension during looping morphogenesis, and (ii) the emergence of patterned proliferation within the embryonic myocardium that generates distinct cardiac chambers. During the transition between these steps, the major site of proliferation switches from progenitor cells outside the early heart to proliferation within the embryonic myocardium. The second heart field and ballooning morphogenesis concepts have major repercussions on our understanding of human heart development and disease.

View Article and Find Full Text PDF

Myocardial cells ensure the contractility of the heart, which also depends on other mesodermal cell types for its function. Embryological experiments had identified the sources of cardiac precursor cells. With the advent of genetic engineering, novel tools have been used to reconstruct the lineage tree of cardiac cells that contribute to different parts of the heart, map the development of cardiac regions, and characterize their genetic signature.

View Article and Find Full Text PDF

John Gurdon has made major contributions to developmental biology in addition to his Nobel prize winning work on nuclear reprogramming. With the frog, Xenopus, as a vertebrate model, his work on mesoderm induction led him to identify a community effect required for tissue differentiation after progenitor cells have entered a specific mesodermal programme. It is in the context of this biologically important concept, with myogenesis as an example, that we have had most scientific exchanges.

View Article and Find Full Text PDF

Multipotent Pax3-positive (Pax3(+)) cells in the somites give rise to skeletal muscle and to cells of the vasculature. We had previously proposed that this cell-fate choice depends on the equilibrium between Pax3 and Foxc2 expression. In this study, we report that the Notch pathway promotes vascular versus skeletal muscle cell fates.

View Article and Find Full Text PDF

During development, major metabolic changes occur as cells become more specialized within a lineage. In the case of skeletal muscle, differentiation is accompanied by a switch from a glycolytic proliferative progenitor state to an oxidative postmitotic differentiated state. Such changes require extensive mitochondrial biogenesis leading to increased reactive oxygen species (ROS) production that needs to be balanced by an antioxidant system.

View Article and Find Full Text PDF

Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent.

View Article and Find Full Text PDF

We discuss the upstream regulators of myogenesis that lead to the activation of myogenic determination genes and subsequent differentiation, focusing on the mouse model. Key upstream genes, such as Pax3 and Pax7, Six1 and Six4, or Pitx2, participate in gene regulatory networks at different sites of skeletal muscle formation. MicroRNAs also intervene, with emerging evidence for the role of other noncoding RNAs.

View Article and Find Full Text PDF