Publications by authors named "Margaret Binnie"

Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription.

View Article and Find Full Text PDF

Acute kidney injury (AKI) following ischemia-reperfusion injury (IRI) has a high mortality and lacks specific therapies. Here, we report that mice lacking kynurenine 3-monooxygenase (KMO) activity (Kmo mice) are protected against AKI after renal IRI. We show that KMO is highly expressed in the kidney and exerts major metabolic control over the biologically active kynurenine metabolites 3-hydroxykynurenine, kynurenic acid, and downstream metabolites.

View Article and Find Full Text PDF

Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion is a major cause of age-related vascular cognitive impairment. A well-characterised mouse model has shown that hypoperfusion results in gliovascular and white matter damage and impaired spatial working memory. In this study, we assessed whether cilostazol, a phosphodiesterase III inhibitor, could protect against these changes.

View Article and Find Full Text PDF

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP.

View Article and Find Full Text PDF

A series of potent, competitive and highly selective kynurenine monooxygenase inhibitors have been discovered via a substrate-based approach for the treatment of acute pancreatitis. The lead compound demonstrated good cellular potency and clear pharmacodynamic activity in vivo.

View Article and Find Full Text PDF

Background And Purpose: Reducing glucocorticoid exposure in the brain via intracellular inhibition of the cortisol-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has emerged as a therapeutic strategy to treat cognitive impairment in early Alzheimer's disease (AD). We sought to discover novel, brain-penetrant 11β-HSD1 inhibitors as potential medicines for the treatment of AD.

Experimental Approach: Medicinal chemistry optimization of a series of amido-thiophene analogues was performed to identify potent and selective 11β-HSD1 inhibitors with optimized oral pharmacokinetics able to access the brain.

View Article and Find Full Text PDF

Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population.

View Article and Find Full Text PDF

The structural and physicochemical properties of the adamantane nucleus account for its use as a chemical scaffold in multiple drugs. In the last years, we have developed new polycyclic scaffolds as surrogates of the adamantane group with encouraging results in multiple targets. As adamantane is a common structural feature in several 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors, we have explored the ability of the 6,7,8,9,10,11-hexahydro-5H-5,9:7,11-dimethanobenzo[9]annulen-7-yl scaffold to act as a surrogate of the adamantane nucleus in a novel series of 11β-HSD1 inhibitors.

View Article and Find Full Text PDF

The adamantane scaffold is found in several marketed drugs and in many investigational 11β-HSD1 inhibitors. Interestingly, all the clinically approved adamantane derivatives are C-1 substituted. We demonstrate that, in a series of paired adamantane isomers, substitution of the adamantane in C-2 is preferred over the substitution at C-1 and is necessary for potency at human 11β-HSD1.

View Article and Find Full Text PDF

Chronic exposure to elevated levels of glucocorticoids has been linked to age-related cognitive decline and may play a role in Alzheimer's disease. In the brain, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies intracellular glucocorticoid levels. We show that short-term treatment of aged, cognitively impaired C57BL/6 mice with the potent and selective 11β-HSD1 inhibitor UE2316 improves memory, including after intracerebroventricular drug administration to the central nervous system alone.

View Article and Find Full Text PDF

Compounds 1-10 were designed using a bioisosteric approach and were prepared using a short synthetic route. The in vitro inhibitory activity of the compounds against 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was evaluated. Compounds 5 (α-series) and 10 (β-series) had a moderate inhibitory enzyme activity (55.

View Article and Find Full Text PDF

Kynurenine 3-monooxygenase (KMO) is a therapeutically important target on the eukaryotic tryptophan catabolic pathway, where it converts L-kynurenine (Kyn) to 3-hydroxykynurenine (3-HK). We have cloned and expressed the human form of this membrane protein as a full-length GST-fusion in a recombinant baculovirus expression system. An enriched membrane preparation was used for a directed screen of approximately 78,000 compounds using a RapidFire mass spectrometry (RF-MS) assay.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates active glucocorticoids (GCs) from intrinsically inert 11-keto substrates inside cells, including neurons, thus amplifying steroid action. Excess GC action exerts deleterious effects on the hippocampus and causes impaired spatial memory, a key feature of age-related cognitive dysfunction. Mice with complete deficiency of 11β-HSD1 are protected from spatial memory impairments with aging.

View Article and Find Full Text PDF

Inhibitors of 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) show promise as drugs to treat metabolic disease and CNS disorders such as cognitive impairment. A series of 1,5-substituted 1H-tetrazole 11beta-HSD1 inhibitors has been discovered and chemically modified. Compounds are selective for 11beta-HSD1 over 11beta-HSD2 and possess good cellular potency in human and murine 11beta-HSD1 assays.

View Article and Find Full Text PDF

The aim of the current study was to investigate the oral antidiabetic activity of six structurally related flavonoids: flavone (1), 3-hydroxyflavone (2), 6-hydroxyflavone (3), 7-hydroxyflavone (4), chrysin (5) and quercetin (6). Normoglycemic and STZ-nicotinamide diabetic rats were treated with these flavonoids (50 mg/kg) and the hypoglycemic and antidiabetic effects in acute and sub acute (five days of treatment) experiments were determined. Compounds 1, 5 and 6 were found most active in both experiments in comparison with control group (p<0.

View Article and Find Full Text PDF

N-(6-Substituted-1,3-benzothiazol-2-yl)benzenesulfonamide derivatives 1-8 were synthesized and evaluated for their in vivo antidiabetic activity in a non-insulin-dependent diabetes mellitus rat model. Several compounds synthesized showed significant lowering of plasma glucose level in this model. As a possible mode of action, the compounds were in vitro evaluated as 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors.

View Article and Find Full Text PDF

A series of adamantyl amide 11beta-HSD1 inhibitors has been discovered and chemically modified. Selected compounds are selective for 11beta-HSD1 over 11beta-HSD2 and possess excellent cellular potency in human and murine 11beta-HSD1 assays. Good pharmacodynamic characteristics are observed in ex vivo assays.

View Article and Find Full Text PDF

Background: Recent data has suggested that polymorphisms in the prostate specific antigen (PSA) may increase prostate cancer (PC) risk. The PSA gene contains a G/A substitution in the androgen response element (ARE) 1 region. The androgen receptor (AR) gene has polymorphic regions containing variable length glutamine and glycine repeats and these are believed to be associated with PC risk.

View Article and Find Full Text PDF