Publications by authors named "Margaret Bills"

Several theorists have argued that readers fail to detect semantic anomalies during reading, and that these effects are indicative of "shallow processing" behaviours. Previous studies of semantic anomalies such as the Moses illusion have focused primarily on explicit detection tasks. In the present study, we examined participants' eye movements as they read true/false statements that were non-anomalous, or contained a semantic anomaly that was either high- or low-related to the correct information.

View Article and Find Full Text PDF

Aromatase converts androgens to estrogens and it is expressed in gonads and non-reproductive tissues (e.g. brain and adipose tissues).

View Article and Find Full Text PDF

In human breast cancer (HBC), as with many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. To determine the tissue source of the most relevant MMPs, we xenografted HBC cell lines and HBC tissues into the mammary fat pad (MFP) or bone of immunocompromised mice and measured the expression of human and mouse MMP-2, -9, -11, -13, membrane-type-1 MMP (MT1-MMP), MT2-MMP and MT3-MMP by species-specific real-time quantitative RT-PCR. Our data confirm a stromal origin for most tumour-associated MMPs and indicate marked and consistent upregulation of stromal (mouse) MMP-13 and MT1-MMP in all xenografts studied, irrespective of implantation in the MFP or bone environments.

View Article and Find Full Text PDF

The ability to activate pro-matrix metalloproteinase (pro-MMP)-2 via membrane type-MMP is a hallmark of human breast cancer cell lines that show increased invasiveness, suggesting that MMP-2 contributes to human breast cancer progression. To investigate this, we have stably transfected pro-MMP-2 into the human breast cancer cell line MDA-MB-231, which lacks MMP-2 expression but does express its cell surface activator, membrane type 1-MMP. Multiple clones were derived and shown to produce pro-MMP-2 and to activate it in response to concanavalin A.

View Article and Find Full Text PDF

Using a yeast two-hybrid screen, we identified a physical interaction between CD46 and DLG4. CD46 is a ubiquitous human cell-surface receptor for the complement components C3b and C4b and for measles virus and human herpesvirus 6. DLG4 is a scaffold protein important for neuronal signaling and is homologous to the Drosophila tumor suppressor DLG.

View Article and Find Full Text PDF