Publications by authors named "Margaret B Allison"

Understanding the neural components modulating feeding-related behavior and energy expenditure is crucial to combating obesity and its comorbidities. Neurons within the paraventricular nucleus of the hypothalamus (PVH) are a key component of the satiety response; activation of the PVH decreases feeding and increases energy expenditure, thereby promoting negative energy balance. In contrast, PVH ablation or silencing in both rodents and humans leads to substantial obesity.

View Article and Find Full Text PDF
Article Synopsis
  • Leptin influences energy balance and glucose levels through its receptor LepRb, which activates STAT3 signaling and another unknown signaling pathway (Signal 2).
  • Researchers used CRISPR/Cas9 to create mouse models with specific genetic changes in LepRb to study its function.
  • They found that certain regions of LepRb (specifically residues 921-960) are critical for the Signal 2 pathway that helps regulate metabolism, revealing that LepRb can transmit signals independently of traditional pathways involving phosphorylation of tyrosine residues.
View Article and Find Full Text PDF

Objectives: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression.

Methods: Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3KO mice), revealing the STAT3-dependent transcriptional targets of leptin.

View Article and Find Full Text PDF

Objective: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance.

View Article and Find Full Text PDF

Leptin acts via its receptor (LepRb) to modulate gene expression in hypothalamic LepRb-expressing neurons, thereby controlling energy balance and glucose homeostasis. Despite the importance of the control of gene expression in hypothalamic LepRb neurons for leptin action, the transcriptional targets of LepRb signaling have remained undefined because LepRb cells contribute a small fraction to the aggregate transcriptome of the brain regions in which they reside. We thus employed translating ribosome affinity purification followed by RNA sequencing to isolate and analyze mRNA from the hypothalamic LepRb neurons of wild-type or leptin-deficient ( mice treated with vehicle or exogenous leptin.

View Article and Find Full Text PDF

The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity.

View Article and Find Full Text PDF

Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores.

View Article and Find Full Text PDF

Previous studies implicate the hypothalamic ventromedial nucleus (VMN) in glycemic control. Here, we report that selective inhibition of the subset of VMN neurons that express the transcription factor steroidogenic-factor 1 (VMN(SF1) neurons) blocks recovery from insulin-induced hypoglycemia whereas, conversely, activation of VMN(SF1) neurons causes diabetes-range hyperglycemia. Moreover, this hyperglycemic response is reproduced by selective activation of VMN(SF1) fibers projecting to the anterior bed nucleus of the stria terminalis (aBNST), but not to other brain areas innervated by VMN(SF1) neurons.

View Article and Find Full Text PDF

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells.

View Article and Find Full Text PDF

Objective: Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular identity of many LepRb subpopulations remain undefined due to the difficulty of studying the small fraction of total cells represented by LepRb neurons in heterogeneous brain regions. Here we sought to examine the transcriptome of LepRb neurons directly and identify markers for functionally relevant LepRb subsets.

View Article and Find Full Text PDF

Projections from the lateral hypothalamic area (LHA) innervate components of the mesolimbic dopamine (MLDA) system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc), to modulate motivation appropriately for physiologic state. Neurotensin (NT)-containing LHA neurons respond to multiple homeostatic challenges and project to the VTA, suggesting that these neurons could link such signals to MLDA function. Indeed, we found that pharmacogenetic activation of LHA NT neurons promoted prolonged DA-dependent locomotor activity and NAc DA efflux, suggesting the importance of VTA neurotransmitter release by LHA NT neurons for the control of MLDA function.

View Article and Find Full Text PDF

Hypothalamic leptin action promotes negative energy balance and modulates glucose homeostasis, as well as serving as a permissive signal to the neuroendocrine axes that control growth and reproduction. Since the initial discovery of leptin 20 years ago, we have learned a great deal about the molecular mechanisms of leptin action. An important aspect of this has been the dissection of the cellular mechanisms of leptin signaling, and how specific leptin signals influence physiology.

View Article and Find Full Text PDF

Leptin is a critical regulator of metabolism, which acts on brain receptors (Lepr) to reduce energy intake and increase energy expenditure. Some of the cellular pathways mediating leptin's anorectic actions are identified, but those mediating the thermogenic effects have proven more difficult to decipher. We define a population of neurons in the dorsomedial hypothalamic nucleus (DMH) containing the RFamide PrRP, which is activated by leptin.

View Article and Find Full Text PDF

Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis.

View Article and Find Full Text PDF

There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine.

View Article and Find Full Text PDF

Adipose tissue is a primary site for lipid storage containing trace amounts of glycogen. However, refeeding after a prolonged partial fast produces a marked transient spike in adipose glycogen, which dissipates in coordination with the initiation of lipid resynthesis. To further study the potential interplay between glycogen and lipid metabolism in adipose tissue, the aP2-PTG transgenic mouse line was utilized since it contains a 100- to 400-fold elevation of adipocyte glycogen levels that are mobilized upon fasting.

View Article and Find Full Text PDF

Adipocyte differentiation comprises altered gene expression and increased triglyceride storage. To investigate the interdependency of these two events, 3T3-L1 cells were differentiated in the presence of glucose or pyruvate. All adipocytic proteins examined were similarly increased between the two conditions.

View Article and Find Full Text PDF

Adipocytes express the rate-limiting enzymes required for glycogen metabolism and increase glycogen synthesis in response to insulin. However, the physiological function of adipocytic glycogen in vivo is unclear, due in part to the low absolute levels and the apparent biophysical constraints of adipocyte morphology on glycogen accumulation. To further study the regulation of glycogen metabolism in adipose tissue, transgenic mice were generated that overexpressed the protein phosphatase-1 (PP1) glycogen-targeting subunit (PTG) driven by the adipocyte fatty acid binding protein (aP2) promoter.

View Article and Find Full Text PDF