Publications by authors named "Margaret Ashcroft"

CHCHD4 (MIA40) is central to the functions of the mitochondrial disulfide relay system (DRS). CHCHD4 is essential and evolutionarily conserved. Previously, we have shown CHCHD4 to be a critical regulator of tumour cell growth.

View Article and Find Full Text PDF

3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions for a MYC-driven murine liver cancer model.

View Article and Find Full Text PDF

Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites . Hibernation in thirteen-lined ground squirrels (TLGS), , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia.

View Article and Find Full Text PDF

Background: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear.

View Article and Find Full Text PDF

Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS).

View Article and Find Full Text PDF
Article Synopsis
  • * The study conducts genome-wide CRISPR/Cas9 deletion screening on 625 tumor cell lines to identify essential mitochondrial genes under various metabolic conditions including normoxia-glucose, hypoxia-glucose, and normoxia-galactose.
  • * Findings reveal that certain oxidative phosphorylation genes can enhance tumor growth in low-oxygen environments while impairing growth in normal oxygen levels, indicating the impact of metabolic conditions on gene function and cell viability.
View Article and Find Full Text PDF

Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions.

View Article and Find Full Text PDF

Objective: The COVID-19 pandemic has led to unprecedented demands on healthcare with many requiring intubation. Tracheostomy insertion has often been delayed and the enduring effects of this on voice, swallow, and airway outcomes in COVID-19 tracheostomy patients are unknown. The aim of this study was to prospectively assess these outcomes in this patient cohort following hospital discharge.

View Article and Find Full Text PDF

Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive.

View Article and Find Full Text PDF

Background: Mitochondrial oxidative phosphorylation (OXPHOS) via the respiratory chain is required for the maintenance of tumour cell proliferation and regulation of epithelial to mesenchymal transition (EMT)-related phenotypes through mechanisms that are not fully understood. The essential mitochondrial import protein coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) controls respiratory chain complex activity and oxygen consumption, and regulates the growth of tumours in vivo. In this study, we interrogate the importance of CHCHD4-regulated mitochondrial metabolism for tumour cell proliferation and EMT-related phenotypes, and elucidate key pathways involved.

View Article and Find Full Text PDF

Background: Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit.

View Article and Find Full Text PDF

Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important for many cellular processes. Eukaryotic cells utilize oxygen for the production of biochemical energy in the form of adenosine triphosphate (ATP) generated from the catabolism of carbon-rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen consumption-coupled ATP production are the mitochondria, double-membraned organelles that provide a dynamic and multifaceted role in cell signalling and metabolism.

View Article and Find Full Text PDF

Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function.

View Article and Find Full Text PDF

Immune cells face constant changes in their microenvironment, which requires rapid metabolic adaptation. In contrast to neutrophils, which are known to rely near exclusively on glycolysis, the metabolic profile of human eosinophils has not been characterized. Here, we assess the key metabolic parameters of peripheral blood-derived human eosinophils using real-time extracellular flux analysis to measure extracellular acidification rate and oxygen consumption rate, and compare these parameters to human neutrophils.

View Article and Find Full Text PDF

Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity.

View Article and Find Full Text PDF

Hypoxia is a characteristic of the tumor microenvironment and is known to contribute to tumor progression and treatment resistance. Hypoxia-inducible factor (HIF) dimeric transcription factors control the cellular response to reduced oxygenation by regulating the expression of genes involved in metabolic adaptation, cell motility, and survival. Alterations in mitochondrial metabolism are not only a downstream consequence of HIF-signaling but mitochondria reciprocally regulate HIF signaling through multiple means, including oxygen consumption, metabolic intermediates, and reactive oxygen species generation.

View Article and Find Full Text PDF

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T).

View Article and Find Full Text PDF

Background & Aims: Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood.

View Article and Find Full Text PDF

The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts.

View Article and Find Full Text PDF

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis.

View Article and Find Full Text PDF

Aims: Hypoxia-inducible factor-1 (HIF-1) has been reported to promote tolerance against acute myocardial ischaemia-reperfusion injury (IRI). However, the mechanism through which HIF-1 stabilization actually confers this cardioprotection is not clear. We investigated whether HIF-1α stabilization protects the heart against acute IRI by preventing the opening of the mitochondrial permeability transition pore (MPTP) and the potential mechanisms involved.

View Article and Find Full Text PDF

The synthesis of emetine analogue NSC-134754, a potent inhibitor of the HIF pathway, has been accomplished and its structure reassigned. The stereochemistry of NSC-134754 has been assigned for the first time using X-ray crystallography and it has been demonstrated that only one diastereoisomer is active against HIF.

View Article and Find Full Text PDF