Exposure to ultrafine particles (UFPs) by inhalation increases the number and severity of cardiac events. The specific mechanism(s) of action are unknown. This study was designed to examine whether UFPs could exert a direct effect on the cardiovascular system without dependence upon lung-mediated responses.
View Article and Find Full Text PDFMolecular biologic techniques have a variety of applications in the study of ischemic heart disease, including roles in elucidating cardiac genetic changes resulting from ischemia as well as in developing therapeutic interventions to treat ischemic heart disease. This review describes recent studies documenting genetic changes associated with myocardial ischemia and infarction as well as those investigating the safety and effectiveness of gene therapy for stimulating angiogenesis, protecting the heart against reperfusion injury, and treating heart failure. Also discussed are future research directions, including the potential use of RNA interference and combined stem cell therapy and gene therapy for the treatment of cardiovascular disease.
View Article and Find Full Text PDFJ Mol Cell Cardiol
October 2005
Cardiovascular disease is a leading cause of mortality in the United States, and is a significant cause of death worldwide. In 2002, it accounted for 38.0% of all deaths in the US, and approximately one-third of all global deaths.
View Article and Find Full Text PDF