Publications by authors named "Margalida Artigues"

mRNA vaccination has emerged as a prominent therapy for the future of medicine. Despite the colossal advance in this technology and worldwide efficacy proof ( COVID vaccines), mRNA carriers still lack cell/tissue specificity, leading to possible side effects, and reduced efficacy among others. Herein we make use of the ubiquitous affinity of antigen-presenting cells (APC)s for glycosides to achieve specific targeting.

View Article and Find Full Text PDF

In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(CH)I], was prepared through oxidative dimerization of a precursor bearing the -disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms.

View Article and Find Full Text PDF

Hydroxyalkanoyloxyalkanoates (HAA) are lipidic surfactants with a number of potential applications, but more remarkably, they are the biosynthetic precursors of rhamnolipids (RL), which are preferred biosurfactants thanks to their excellent physicochemical properties, biological activities, and environmental biodegradability. Because the natural highest producer of RLs is the pathogenic bacterium Pseudomonas aeruginosa, important efforts have been dedicated to transfer production to heterologous non-pathogenic microorganisms. Unicellular photosynthetic microalgae are emerging as important hosts for sustainable industrial biotechnology due to their ability to transform CO efficiently into biomass and bioproducts of interest.

View Article and Find Full Text PDF

Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated.

View Article and Find Full Text PDF

One of the most important factors for the proper functioning of enzymatic electrochemical biosensors is the enzyme immobilization strategy. In this work, glucose oxidase was covalently immobilized using pentafluorophenyl methacrylate (PFM) by applying two different surface modification techniques (plasma polymerization and plasma-grafting). The grafted surface was specifically designed to covalently anchor enzyme molecules.

View Article and Find Full Text PDF

Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO₂NTAs) has been evaluated.

View Article and Find Full Text PDF