Among several complications related to physiotherapy, osteosarcopenia is one of the most frequent in elderly patients. This condition is limiting and quite harmful to the patient's health by disabling several basic musculoskeletal activities. Currently, the test to identify this health condition is complex.
View Article and Find Full Text PDFThis study performs a chemical investigation of blood plasma samples from patients with and without fibromyalgia, combined with some of the symptoms and their levels of intensity used in the diagnosis of this disease. The symptoms evaluated were: visual analogue pain scale (VAS); fibromyalgia impact questionnaire (FIQ); Hamilton anxiety rating scale (HAM); Tampa Scale for Kinesiophobia (TAMPA); quality of life Questionnaire-physical and mental health (QL); and Pain Catastrophizing Scale (CAT). Plasma samples were analyzed by paper spray ionization mass spectrometry (PSI-MS).
View Article and Find Full Text PDFDespite tremendous research advances in detecting Alzheimer's disease (AD), traditional diagnostic tests remain expensive, time-consuming or invasive. The search for a low-cost, rapid, and minimally invasive test has marked a new era of research and technological developments toward establishing blood-based AD biomarkers. The current study has employed excitation-emission matrices (EEM) of fluorescence spectroscopy combined with machine learning to diagnose AD using blood plasma samples from 230 individuals (83 AD patients from 147 healthy controls).
View Article and Find Full Text PDFActa Trop
November 2022
Infrared spectroscopy has been gaining prominence in entomology, such as for solving taxonomic problems, sexing adult specimens, determining the age of immature specimens, detecting drugs of abuse in fly larvae, and can be an important technique in Forensic Entomology. In order to help identify the species of Calliphoridae and Sarcophagidae families, the present study aimed to evaluate the use of near infrared spectroscopy (NIRS) coupled with chemometric methods for separating fly specimens into taxonomic categories and understanding the taxonomic relationship between them. Spectra collected from nine species of flies were subjected to unsupervised principal component analysis (PCA) and hierarchical cluster analysis (HCA), in which we sought to visualize the relationship between the samples (segregation of genera and families) with subsequent identification.
View Article and Find Full Text PDFOne of the most important steps in preventing arboviruses is entomological surveillance. The main entomological surveillance action is to detect vector foci in the shortest possible stages. In this work, near and medium infrared spectra collected from female Aedes aegypti mosquitoes recently infected and not infected with dengue were used in order to build chemometric models capable of differentiating the spectra of each class.
View Article and Find Full Text PDFThis study evaluated the feasibility of infrared (MIR/NIR) spectroscopy coupled to chemometrics as an alternative method for determining the antioxidant activity (AA%) of pomegranate (Punica granatum) and clove (Syzygium aromaticum) alcoholic extracts versus the conventional DPPH method. Multivariate curve resolution with alternating least squares (MCR-ALS) and Partial least squares (PLS) regression were efficient to predict the AA%, thus providing good accuracy and low residuals compared to the standard method. The MCR-ALS combined with NIR data stood out among the other models with R ≥ 0.
View Article and Find Full Text PDFSignificant attempts are being made worldwide in an attempt to develop a tool that, with a simple analysis, is capable of distinguishing between different arboviruses. Herein, we employ molecular fluorescence spectroscopy as a sensitive and specific rapid tool, with simple methodology response, capable of identifying spectral variations between serum samples with or without the dengue or chikungunya viruses. Towards this, excitation emission matrices (EEM) of clinical samples from patients with dengue or chikungunya, in addition to uninfected controls, were separated into a training or test set and analysed using multi-way classification models such as n-PLSDA, PARAFAC-LDA and PARAFAC-QDA.
View Article and Find Full Text PDFMotivation: Data splitting is a fundamental step for building classification models with spectral data, especially in biomedical applications. This approach is performed following pre-processing and prior to model construction, and consists of dividing the samples into at least training and test sets; herein, the training set is used for model construction and the test set for model validation. Some of the most-used methodologies for data splitting are the random selection (RS) and the Kennard-Stone (KS) algorithms; here, the former works based on a random splitting process and the latter is based on the calculation of the Euclidian distance between the samples.
View Article and Find Full Text PDFAdulteration is a recurrent issue found in fuel screening. Commercial diesel contamination by kerosene is highly difficult to be detected via physicochemical methods applied in market. Although the contamination may affect diesel quality and storage stability, there is a lack of efficient methodologies for this evaluation.
View Article and Find Full Text PDFUnequivocal identification of fly specimens is an essential requirement in forensic entomology. Herein, a simple, non-destructive and rapid method based on two vibrational spectroscopy techniques [Near-Infrared Spectroscopy (NIRS) and attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy] coupled with variable selection techniques such as genetic algorithm-linear discriminant analysis (GA-LDA) and successive projection algorithm-linear discriminant analysis (SPA-LDA) were applied for identifying and discriminating six species of flesh flies (Diptera: Sarcophagidae) native to Neotropical regions. This novel approach is based on the unique spectral "fingerprints" of their biochemical composition.
View Article and Find Full Text PDFThis review presents a retrospective of the studies carried out in the last 10 years (2006-2016) using spectroscopic methods as a research tool in the field of virology. Spectroscopic analyses are sensitive to variations in the biochemical composition of the sample, are non-destructive, fast and require the least sample preparation, making spectroscopic techniques tools of great interest in biological studies. Herein important chemometric algorithms that have been used in virological studies are also evidenced as a good alternative for analyzing the spectra, discrimination and classification of samples.
View Article and Find Full Text PDF