Basic Clin Pharmacol Toxicol
January 2024
Duloxetine is metabolized by cytochrome P450 (CYP)1A2 and CYP2D6. The aim of this study was to investigate the effect of the CYP2D6 genotype on duloxetine serum concentration adjusting for age and sex. Patients were included retrospectively from a therapeutic drug monitoring service.
View Article and Find Full Text PDFObjective: Vedolizumab, a monoclonal antibody directed against the integrin heterodimer α4β7, is approved for the treatment of Crohn's disease and ulcerative colitis. The efficacy of vedolizumab has been suggested to result from inhibition of intestinal T cell trafficking although human data to support this conclusion are scarce. We therefore performed a comprehensive analysis of vedolizumab-induced alterations in mucosal and systemic immunity in patients with inflammatory bowel disease (IBD), using anti-inflammatory therapy with the TNFα antibody infliximab as control.
View Article and Find Full Text PDFWith this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing.
View Article and Find Full Text PDFThe intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2).
View Article and Find Full Text PDFBurkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression.
View Article and Find Full Text PDFThe TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death.
View Article and Find Full Text PDFFas ligand (FasL, CD95L, APO-1L, CD178, TNFSF6, APT1LG1) is the key death factor of receptor-triggered programmed cell death in immune cells. FasL/Fas-dependent apoptosis plays a pivotal role in activation-induced cell death, termination of immune responses, elimination of autoreactive cells, cytotoxic effector function of T and NK cells, and the establishment of immune privilege. Deregulation or functional impairment of FasL threatens the maintenance of immune homeostasis and defense and results in severe autoimmunity.
View Article and Find Full Text PDFActivation of resting T cells in vitro is triggered by combined TCR and CD28 engagement and can be modulated by simultaneous ligation of various other surface receptors. Although the Fas ligand (FasL) is best known for its capacity to initiate cell death in Fas-bearing cells, it has recently been implicated in the regulation of T cell activation. Thus, a cross-talk between the TCR and FasL is likely, but far from being biochemically elucidated.
View Article and Find Full Text PDFThe TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death.
View Article and Find Full Text PDFThe TNF family member Fas ligand (FasL) induces apoptosis in Fas-expressing cells and serves as a key death factor in the immune system. It is involved in the termination of immune responses by activation-induced cell death, the selection of thymocytes and T and NK cell-mediated cytotoxicity. FasL also participates in the establishment of immune privilege and contributes to tumor cell survival.
View Article and Find Full Text PDFCaspases are essential mediators of cytokine release and apoptosis. Additionally, caspase activity is required for the proliferation of naive T lymphocytes. It remained unclear how proliferating cells are able to cope with the pro-apoptotic activity especially of effector caspases-3 and -7.
View Article and Find Full Text PDFThe cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner.
View Article and Find Full Text PDF