Knowledge of freeze-thaw-induced carbon (C) and nitrogen (N) cycling and concomitant nitrous oxide (NO) and carbon dioxide (CO) emissions in perennial bioenergy crops is crucial to understanding the contribution of these crops in mitigating climate change through reduced greenhouse gas (GHG) emissions. In this study, a 49-day laboratory incubation experiment was conducted to compare the impact of freeze-thaw cycles on NO and CO emissions in different perennial bioenergy crops [miscanthus (Miscanthus giganteus L.), switchgrass (Panicum virgatum L.
View Article and Find Full Text PDFRiparian buffer systems (RBS) are a common agroforestry practice that involves maintaining a forested boundary adjacent to water bodies to protect the aquatic ecosystems in agricultural landscapes. While RBS have potential for carbon sequestration, they also can be sources of methane emissions. Our study site at Washington Creek in Southern Ontario, includes a rehabilitated tree buffer (RH), a grassed buffer (GRB), an undisturbed deciduous forest (UNF), an undisturbed coniferous forest (CF), and an adjacent agricultural field (AGR).
View Article and Find Full Text PDFRiparian zones provide multiple benefits, including streambank stabilization and nutrient abatement. However, there is a knowledge gap on how the type of vegetation and environmental factors (e.g.
View Article and Find Full Text PDFRiparian buffer systems (RBS) are considered a best management practice (BMP) in agricultural landscapes to intercept soil nitrogen (N) and phosphorus (P) leaching and surface runoff into aquatic ecosystems. However, these environmental benefits could be offset by increased greenhouse gas (GHG) emissions, including nitrous oxide (NO). The main sources of NO in soil are linked to processes which are mediated by soil microbial communities.
View Article and Find Full Text PDFFEMS Microbiol Ecol
February 2017
Despite progress in understanding microbial biogeography of surface soils, few studies have investigated depth-dependent distributions of terrestrial microorganisms in subsoils. We leveraged high-throughput sequencing of 16S rRNA genes obtained from soils collected from the RARE: Charitable Research Reserve (Cambridge, ON, Canada) to assess the influence of depth on bacterial communities across various land-use types. Although bacterial communities were strongly influenced by depth across all sites, the magnitude of this influence was variable and demonstrated that land-use attributes also played a significant role in shaping soil bacterial communities.
View Article and Find Full Text PDFRehabilitated riparian zones in agricultural landscapes enhance environmental integrity and provide environmental services such as carbon (C) sequestration. This study quantified differences in organic matter input, soil biochemical characteristics, and soil respiration in a 25-year-old rehabilitated (RH), grass (GRS), and undisturbed natural forest (UNF) riparian zone. Input from herbaceous vegetation was significantly greater (P < 0.
View Article and Find Full Text PDFThe boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO(2) and CH(4) emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO(2) and CH(4) mean production rates, and (13)C fractionation in laboratory incubations at 14 and 21 degrees C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined.
View Article and Find Full Text PDF