The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2024
Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity.
View Article and Find Full Text PDFA data coordinating center (DCC) is a critical member of any multicenter research undertaking, and that is especially true for the Type 1 Diabetes in Acute Pancreatitis Consortium (T1DAPC). We describe how the T1DAPC DCC supports the consortium via its experience and expertise in project management, administration, financial management, regulatory compliance, scientific coordination, data management, research computing, and biostatistics and in facilitating scientific publications. The DCC's matrix management system has been extremely effective in managing all of its responsibilities.
View Article and Find Full Text PDFThis core component of the Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study will examine the hypothesis that advanced magnetic resonance imaging (MRI) techniques can reflect underlying pathophysiologic changes and provide imaging biomarkers that predict diabetes mellitus (DM) after acute pancreatitis (AP). A subset of participants in the DREAM study will enroll and undergo serial MRI examinations using a specific research protocol. The aim of the study is to differentiate at-risk individuals from those who remain euglycemic by identifying parenchymal features after AP.
View Article and Find Full Text PDFThe association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP.
View Article and Find Full Text PDFObjectives: The metabolic abnormalities that lead to diabetes mellitus (DM) after an episode of acute pancreatitis (AP) have not been extensively studied. This article describes the objectives, hypotheses, and methods of mechanistic studies of glucose metabolism that comprise secondary outcomes of the DREAM (Diabetes RElated to Acute pancreatitis and its Mechanisms) Study.
Methods: Three months after an index episode of AP, participants without preexisting DM will undergo baseline testing with an oral glucose tolerance test.
Pancreas
July 2022
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory phase followed by a convalescent phase. Diabetes mellitus (DM) was historically felt to be a transient phenomenon related to acute inflammation; however, it is increasingly recognized as an important late and chronic complication. There are several challenges that have prevented precisely determining the incidence rate of DM after AP and understanding the underlying mechanisms.
View Article and Find Full Text PDFAcute pancreatitis (AP), resulting from inflammation of the pancreas, accounts for more than 300,000 US hospital discharges per year. Although glucose intolerance has been known as a complication of severe AP, this effect was thought to be transient. Recently, cohort studies and meta-analysis of 24 published studies of 1100 patients who survived one or more episodes of AP revealed that 30% to 40% of patients developed diabetes or impaired glucose tolerance within 3 to 4 years of even a single episode of AP.
View Article and Find Full Text PDFMetabolism and inflammation have been viewed as two separate processes with distinct but critical functions for our survival: metabolism regulates the utilization of nutrients, and inflammation is responsible for defense and repair. Both respond to an organism's stressors to restore homeostasis. The interplay between metabolic status and immune response (immunometabolism) plays an important role in maintaining health or promoting disease development.
View Article and Find Full Text PDFPreventing regain of lost weight is the most difficult challenge in the treatment of obesity. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop, "The Physiology of the Weight-Reduced State," on June 3 to 4, 2019, in order to explore the physiologic mechanisms of appetitive and metabolic adaptation that take place in the weight-reduced state and counter an individual's efforts to maintain reduced weight following weight loss.
View Article and Find Full Text PDFWhile conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research.
View Article and Find Full Text PDFBackground: The responses to behavioral, pharmacological, or surgical obesity treatments are highly individualized. The Accumulating Data to Optimally Predict obesity Treatment (ADOPT) project provides a framework for how obesity researchers, working collectively, can generate the evidence base needed to guide the development of tailored, and potentially more effective, strategies for obesity treatment.
Objectives: The objective of the ADOPT biological domain subgroup is to create a list of high-priority biological measures for weight-loss studies that will advance the understanding of individual variability in response to adult obesity treatments.
Human brown adipose tissue (BAT) presence, metabolic activity, and estimated mass are typically measured by imaging [18F]fluorodeoxyglucose (FDG) uptake in response to cold exposure in regions of the body expected to contain BAT, using positron emission tomography combined with X-ray computed tomography (FDG-PET/CT). Efforts to describe the epidemiology and biology of human BAT are hampered by diverse experimental practices, making it difficult to directly compare results among laboratories. An expert panel was assembled by the National Institute of Diabetes and Digestive and Kidney Diseases on November 4, 2014 to discuss minimal requirements for conducting FDG-PET/CT experiments of human BAT, data analysis, and publication of results.
View Article and Find Full Text PDFRadiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells.
View Article and Find Full Text PDFThe beneficial effects of physical activity (PA) are well documented, yet the mechanisms by which PA prevents disease and improves health outcomes are poorly understood. To identify major gaps in knowledge and potential strategies for catalyzing progress in the field, the NIH convened a workshop in late October 2014 entitled "Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits." Presentations and discussions emphasized the challenges imposed by the integrative and intermittent nature of PA, the tremendous discovery potential of applying "-omics" technologies to understand interorgan crosstalk and biological networking systems during PA, and the need to establish an infrastructure of clinical trial sites with sufficient expertise to incorporate mechanistic outcome measures into adequately sized human PA trials.
View Article and Find Full Text PDFAs part of a current worldwide effort to understand the physiology of human BAT (hBAT) and whether its thermogenic activity can be manipulated to treat obesity, the workshop "Exploring the Roles of Brown Fat in Humans" was convened at the National Institutes of Health on February 25-26, 2014. Presentations and discussion indicated that hBAT and its physiological roles are highly complex, and research is needed to understand the health impact of hBAT beyond thermogenesis and body weight regulation, and to define its interactions with core physiological processes like glucose homeostasis, cachexia, physical activity, bone structure, sleep, and circadian rhythms.
View Article and Find Full Text PDFAlthough there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver.
View Article and Find Full Text PDFFructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13-14 November 2012, "Research Strategies for Fructose Metabolism," to identify important scientific questions and parameters to be considered while designing clinical studies.
View Article and Find Full Text PDFThe Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis.
View Article and Find Full Text PDFThe widespread use of the inadequately defined term "leptin resistance" led the National Institutes of Health to convene a workshop aimed at developing a quantitative definition of this term that would facilitate mechanistic research into leptin's actions in human health and disease. Although leptin-responsive conditions are recognized, the field is limited by a lack of robust, easily quantifiable behavioral or metabolic biomarkers of the hormone's action. Further advances require biomarkers that can be used to identify patients who may benefit from leptin therapy and that are useful for understanding the determinants of clinical leptin responsiveness.
View Article and Find Full Text PDFThis article addresses two topics. We provide an overview of the National Institutes of Health Mouse Metabolic Phenotyping Center (MMPC) Program. We then discuss some observations we have made during the first eight years of the Vanderbilt MMPC regarding common phenotyping practices.
View Article and Find Full Text PDFBackground: Pancreatic islet transplantation can provide insulin independence and near normal glucose control in selected patients with type 1 diabetes mellitus. However, in most cases, achieving insulin independence necessitates the use of at least two donor pancreases per recipient and the rate of insulin independence may decline after transplantation. To better understand the fate of transplanted islets and the relationship between transplanted islet mass, graft function, and overall glucose homeostasis, an accurate and reproducible method of imaging islets in vivo is needed.
View Article and Find Full Text PDF