Publications by authors named "Maren Grazzini"

Purpose: Axitinib (AG-013736) is a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases 1 to 3 that is in clinical development for the treatment of solid tumors. We provide a comprehensive description of its in vitro characteristics and activities, in vivo antiangiogenesis, and antitumor efficacy and translational pharmacology data.

Experimental Design: The potency, kinase selectivity, pharmacologic activity, and antitumor efficacy of axitinib were assessed in various nonclinical models.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies.

View Article and Find Full Text PDF

Background: In order to facilitate the identification of genes involved in the metastatic phenotype we have previously developed a pair of cell lines from the human breast carcinoma cell line MDA-MB-435, which have diametrically opposite metastatic potential in athymic mice. Differential display analysis of this model previously identified a novel gene, DRIM (down regulated in metastasis), the decreased expression of which correlated with metastatic capability. DRIM encodes a protein comprising 2785 amino acids with significant homology to a protein in yeast and C.

View Article and Find Full Text PDF