Publications by authors named "Maren Flasshoff"

The adenosine A1 receptor (AR) is a promising target for pain treatment. However, the development of therapeutic agonists is hampered by adverse effects, mainly including sedation, bradycardia, hypotension, or respiratory depression. Recently discovered molecules able to overcome this impediment are the positive allosteric modulator MIPS521 and the A1R-selective agonist BnOCPA, which are both potent and powerful analgesics with fewer side effects.

View Article and Find Full Text PDF

The TGFβ type II receptor (TβRII) is a central player in TGFβ signaling downstream events, has been linked to cancer progression, and thus, has emerged as an auspicious anti-TGFβ strategy. Especially its targeted degradation presents an excellent goal for effective TGFβ pathway inhibition. Here, cellular structure-activity relationship (SAR) data from the TβRII degrader chemotype was successfully transformed into predictive ligand-based pharmacophore models that allowed scaffold hopping.

View Article and Find Full Text PDF

The HSP90/CDC37 chaperone system not only assists the maturation of many protein kinases but also maintains their structural integrity after folding. The interaction of mature kinases with the HSP90/CDC37 complex is governed by the conformational stability of the catalytic domain, while the initial folding of the protein kinase domain is mechanistically less well characterized. DYRK1A (Dual-specificity tyrosine (Y)-phosphorylation Regulated protein Kinase 1A) and DYRK1B are closely related protein kinases with discordant HSP90 client status.

View Article and Find Full Text PDF

The highly conserved dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) plays crucial roles during central nervous system development and homeostasis. Furthermore, its hyperactivity is considered responsible for some neurological defects in individuals with Down syndrome. We set out to establish a zebrafish model expressing human Dyrk1A that could be further used to characterize the interaction between Dyrk1A and neurological phenotypes.

View Article and Find Full Text PDF

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes.

View Article and Find Full Text PDF

Since hyperactivity of the protein kinase DYRK1A is linked to several neurodegenerative disorders, DYRK1A inhibitors have been suggested as potential therapeutics for Down syndrome and Alzheimer's disease. Most published inhibitors to date suffer from low selectivity against related kinases or from unfavorable physicochemical properties. In order to identify DYRK1A inhibitors with improved properties, a series of new chemicals based on []-annulated halogenated indoles were designed, synthesized, and evaluated for biological activity.

View Article and Find Full Text PDF